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ABSTRACT

Unlawful video surveillance of unsuspecting individuals using
spy cameras has become an increasing concern. To mitigate these
threats, there are both commercial products and research proto-
types designed to detect hidden spy cameras in household and
office environments. However, existing work often relies heavily
on user expertise and only applies to wireless cameras. To bridge
this gap, we propose HeatDeCam, a thermal-imagery-based spy
camera detector, capable of detecting hidden spy cameras with or
without built-in wireless connectivity. To reduce the reliance on
user expertise, HeatDeCam leverages a compact neural network
deployed on a smartphone to recognize unique heat dissipation
patterns of spy cameras. To evaluate the proposed system, we have
collected and open-sourced a dataset of a total of 22506 thermal and
visual images. These images consist of 11 spy cameras collected
from 6 rooms across different environmental conditions. Using this
dataset, we found HeatDeCam can achieve over 95% accuracy in
detecting hidden cameras. We have also conducted a usability eval-
uation involving a total of 416 participants using both an online
survey and an in-person usability test to validate HeatDeCam.
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1 INTRODUCTION

Hidden surveillance cameras, also known as “spy cameras”, are
video cameras hidden or disguised as other common objects, gen-
erally deployed with the goal of recording people without their
knowledge. While surveillance cameras may have legitimate uses
for home security, the presence of such cameras in private areas
such as dressing rooms raises significant privacy concerns. In 2017,
more than 6400 cases of illicit filming were reported in South Ko-
rea, many of which took place in hotels, and subsequently led to
widespread protests [25, 44]. It is reported that incidents involving
hidden cameras in Airbnb accommodations are prevalent where 1
in 132 listings have indicated cameras are installed and more than
17% did not specify where these cameras were placed [24].
Existing Detection Methods. To tackle the emerging threat of
unlawful recording with spy cameras, existing approaches gener-
ally fall into two categories based on the physical channel on which
the detection module operates, i.e., radio frequency (RF) signals
and optical reflections. In the line of RF-based detection methods,
both commercial detectors and research prototypes aim to capture
RF emissions due to network communications of wireless cameras.
Existing commercial products often provide an alert when RF sig-
nals are detected and can lead to high false positives. Therefore,
recent research [12, 21, 29, 41] focuses on finer-grained analysis of
network communications. For instance, DeWiCam [12] leveraged
supervised learning to discover traffic flows of wireless cameras,
and [21, 29, 41] achieved detection by identifying causality between
scenario changes (e.g., user motion, ambient light on/off) and net-
work traffic variations. On the other hand, optical-based methods
detect cameras using reflections of the lens. Commercial optical
detectors emanate red light from built-in LEDs to assist users’ sub-
jective judgment with the reflections, and a recent work by Sami
et al. [37] leveraged the laser time-of-flight (ToF) depth sensors
in newer generations of mobile devices to locate cameras hidden
inside pre-identified suspicious objects. When the user scans care-
fully at an appropriate distance (0.5m), it is possible to leverage
higher reflection intensity to reveal hidden cameras.
Usability Limitations of Existing Techniques. Despite recent
success, the usability and generalization of existing methods are
constrained by the physical signals used to detect spy cameras.
Existing approaches that use the emission of RF signals from spy
cameras are only applicable to those that are wirelessly connected,
which accounts for 60% of the market [4]. However, the remaining
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Figure 1: HeatDeCam overview.

40% of spy cameras simply do not have any network connection
due to considerations on stealthiness, battery, form factor, and cost.
Existing optical-based tools are also limited by the physical vector
since the quality of the reflections depends heavily on the relative
position of the user. Thus, the user will often first need to know
where to check [37]. This can somewhat diminish the usability of
the detectors for those without prior knowledge of spy cameras.
Our DetectionMethod. Recognizing limitations inherent to these
physical channels, we turn to thermal imagery as the detection
vector, since it is significantly less sensitive to the manner users
operate on the equipment. The general idea of using thermal im-
ages to manually find hidden objects [15, 31, 45], particularly spy
cameras [1, 13, 32], is well established due to its effectiveness in
discovering heated objects. However, existing approaches gener-
ally rely on users to interpret the thermal images, which requires
experience and expertise. In this project, we bridge the gap in us-
ability by developing a neural-network-based automatic detection
system, HeatDeCam, to make the technology accessible to users
with different levels of prior knowledge.

As shown in Figure 1, HeatDeCam captures both thermal and
visual images simultaneously from a thermal camera attachment
and presents both the detection result (whether any spy cameras
exist in the scene) and the visualized hidden places. Compared to
existing approaches [12, 21, 29, 41], the proposed method can be ap-
plied to both networked and network-less spy cameras. It also offers
detection over a wider region instead of a pre-identified suspicious
object [37], making it easier to use for non-experts. Using a thermal
camera dongle attachment (often available for around $100 [3, 14]),
HeatDeCam can be deployed on most mobile phones using an app
to house the lightweight machine learning components.
Challenges and Solutions. There are several technical challenges.
One of the primary objectives of HeatDeCam is to make it usable
for users without expertise. Instead of asking users to scan from
a certain angle or scan pre-identified suspicious objects, HeatDe-
Cam has to work on a wide inspection area that contains both
regular electronic devices and spy cameras, both of which emit a
non-negligible amount of heat. To facilitate better recognition of the
unique heat signature of spy cameras, we incorporated a CBAM at-
tention module [50] and an adaptive soft mask to hint the algorithm
to learn high-dimensional heat dissipation features. However, from
the user’s perspective, knowing the existence of cameras within a
broad viewing angle is helpful yet insufficient, since it can still be

difficult to locate small spy cameras. To tackle this challenge, Heat-
DeCam leverages a gradient-based visualization mechanism [40]
to explain the decision by highlighting suspicious areas, allowing
the users to gradually narrow down to small hidden places. Lastly,
HeatDeCam needs to be accessible to a diverse population of users,
since some may carry phones with less computational resources.
As such, we customized and optimized a lightweight ResNet-based
neural network to improve computational efficiency.
Experiments and Findings.We implemented a prototype of Heat-
DeCam as an Android app displaying a live view of both thermal
and visual images. The outputs from the machine learning model
are overlaid on top of the images. To validate our machine learning
algorithm, we have also collected multiple datasets, which contain
22506 thermal and visual images consisting of 11 cameras collected
from 6 rooms across different environmental conditions (such as
temperature). We found that our lightweight machine learning
model has over 95% accuracy. To evaluate the usability, we have
conducted both an online survey and an in-person usability test.
In the online survey, we invited 380 participants and asked them
to identify spy cameras in the output images of HeatDeCam. We
then evaluated the efficacy based on the correctness of responses,
and the usability based on the system usability scale (SUS) question-
naire. In the in-person usability test, 36 participants were given two
minutes to find spy cameras within an office room, in which five dif-
ferent spy cameras were hidden. The performance of HeatDeCam
is then compared with three commercial state-of-the-art detection
methods in terms of detection rate, false positives, and usability in
the user study. Our contributions are outlined as follows:

• We systemize existing commercially available spy cameras
and detectors to understand the usability challenges.

• We propose HeatDeCam, a usable spy camera detection
method leveraging unique heat dissipation and heat signa-
ture of spy cameras.

• We collect the first spy-camera dataset consisting of 22506
thermal and visual pictures, covering various scenarios in-
cluding Airbnb, hotel, and office settings. All the data is
open-sourced to the community1.

• We develop a prototype of our approach as a mobile app,
with which we study the effectiveness and usability by evalu-
ating it against eleven spy cameras and three state-of-the-art
detection methods.

2 BACKGROUND

In order to develop an effective detection method, we conducted a
market survey to understand the types of commercially available
spy cameras and their deployed environment. Through this process,
we also attempted to understand the characteristics of the heat
emanation of spy cameras compared to other electronics.

2.1 Spy Camera Market

Spy cameras are widely available for purchase online through mar-
ketplaces such as Amazon and Alibaba for prices as low as $10 [4].
We surveyed the top 50 best-selling spy cameras on Amazon, and
summarized the results in Table 1. The full table can be found in the

1Data and the extended technical report are available at https://heatdecam.github.io/.
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Table 1: Summary of top 50 cameras on Amazon.

Category Network Connectivity Market Share Avg. PriceWireless None Number Percentage
Inconspicuous 16 0 16 32% $36.91
Non-electrical 2 6 8 16% $32.87
Electrical 19 7 26 52% $66.39

(a) Inconspicuous (b) Non-electrical camouflaged (c) Electrical camouflaged

Figure 2: Examples of the three types of spy cameras.

extended technical report available on the project website. In this
work, we categorize existing spy cameras into three types based
on heat emissions and deployment environment, which are the
most important factors for detection. Spy cameras can either be
inconspicuous and hidden in stealthy locations, or camouflaged as
regular objects with or without electrical components.
Inconspicuous Cameras: They are generally small in size and are
not concealed as regular objects. The low power consumption and
small size provide them with unique advantages in stealthiness, en-
abling them to be hidden in locations such as drywall, bookshelves,
or plants. Based on our survey, this type of camera consists of 32%
of the top 50 most popular commercial spy cameras.
Non-electrical Camouflaged Cameras: These cameras are con-
cealed as other regular non-electrical objects such as picture frames.
Many of these cameras can be identified via thermal vector due to
their abnormal heat emanation that mismatches the non-electrical
disguises. This category accounts for 16% of the surveyed market.
Electrical Camouflaged Cameras: These cameras are concealed
inside other household electrical devices, such as a smoke detec-
tor, an alarm clock, or a USB charger. Compared to non-electrical
camouflaged cameras, detecting these cameras via thermal is less
straightforward, as the disguised electrical components emanate
heat as well. These cameras share 52% of the surveyed market.

Figure 2 shows examples of an inconspicuous camera, two non-
electrical camouflaged cameras concealed as picture frames, and an
electrical camouflaged camera concealed as a clock, respectively.
Each of these categories can be further split into spy cameras that
are wirelessly connected and those that are not. Among the sur-
veyed top 10 best-sellers, only 60% have Wi-Fi capability and are
generally more expensive.

2.2 Structure of Spy Cameras

Figure 3 shows the typical structure of spy cameras. From our
survey and dissection of common spy cameras, we conclude the
structure to two modules, the power module and the camera module.
Power Module: All spy cameras need to be powered, typically via
batteries or power lines. Batteries provide low-voltage DC power in
which a large amount will be converted into heat. Cameras powered

(a) Camera disguised as a bulb powered bywire (b) Inconspicuous camera powered by battery

Figure 3: Structure of two typical spy cameras.

by wires are provided with relatively high (e.g., 110𝑉 ) alternating
voltage, and they generally include a power circuit incorporat-
ing coils to transform input power to low direct voltage (e.g., 6𝑉 ).
For electrical camouflaged cameras consisting of additional com-
ponents, the disguised functionalities are supported by the same
power module with cameras and therefore consume more power.
Power modules in spy cameras generate significant heat according
to Joule’s law, which is critical for thermal-based detection.
CameraModule:While almost all electronic devices contain power
modules as well, the camera module is the key component that char-
acterizes spy cameras. The camera module mainly consists of two
parts: the lens system and the processing system. The lens system
is the most typical and necessary component in all spy cameras.
The lenses generally comprise convex and concave lenses to cap-
ture light, and the light beams are processed by image sensors,
which convert the light radiance falling on a pixel sensor into a
pixel intensity. The processing system provides several functionali-
ties, and the most common yet important one is video processing
where the video is compressed based on a coding standard such as
H.264 [49] for further transmission or storage. Additionally, it can
provide more features such as Wi-Fi, audio noise reduction, motion
detection, etc. These functionalities are incorporated on a board,
on which each unit provides a different service.

2.3 Heat Patterns of Spy Cameras

The distinct components and internal layout of spy cameras lead
to unique heat emissions that separate them from other objects.
Formation of Heat Patterns: The heat patterns of spy cameras
originate from two aspects. First, regardless of how the cameras are
concealed, camera-specific components always generate additional
heat that leads to higher energy in thermal images. These patterns
can be particularly helpful for detection when cameras are embed-
ded in non-typical heat sources (such as picture frames). Second,
the need for stealthiness inevitably alters the internal layout of
spy cameras, which affects heat dissipation and displays as heat
distribution patterns. Heat is a well-known problem for electronics,
therefore the internal layout of the electrical components is gen-
erally optimized for efficient heat flow [11]. However, in order to
add stealthy recording capabilities to existing objects, additional
electrical components have to be added without altering the orig-
inal form factor. This design choice of spy cameras often causes
considerable changes to the internal layout and the corresponding
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(a) Four spy cameras (b) A camera and a charger (c) A camera and a charger

Figure 4: Thermal view of four cameras and a charger plug.

thermal dynamics, leading to a uniquely different heat distribution
pattern under thermal imaging.
Examples ofHeat Patterns:The above insights are further demon-
strated in Figure 4, which shows some examples of heat patterns.
Figure 4(a) shows four spy cameras observed via thermal cam-
era, including a camera concealed as an electronic clock, a camera
concealed as a charger, an inconspicuous camera, and a camera
concealed as a picture frame. They all display heat that is visible
via thermal cameras, and compared to the charger and electronic
clock, the abnormal heat emissions from the picture frame are more
likely to raise alarm by humans. Figure 4(b) and 4(c) show a regular
charger and a camera concealed as charger placed side-by-side.
While they appear visually similar, their heat patterns are signifi-
cantly different and can be attributed to two major reasons. Firstly,
the heat on the camera charger is concentrated in two regions
where there lies the power module and camera module, which are
camera-specific components that produce additional heat. Secondly,
the regular charger shows a uniform heat distribution due to the
well-studied and commercially-applied layout optimization for heat
dissipation [23, 42]. However, the camera components have to be
deployed inside without changing the form factor for stealthiness,
which interferes with the airflow that leads to the heat patterns.
Summary: These observations motivate us to adopt thermal as
the detection vector due to its wide applicability and spy-camera-
specific characteristics. On the other hand, it can be difficult for
users without expertise to detect all spy cameras (especially those
camouflaged as electrical devices). Therefore, usability for non-
expert users is a key challenge.

3 RELATEDWORK

The growing surveillance threats have stimulated the development
of several commercial products and research prototypes for hidden
camera detection. From the perspective of physical vectors used for
detection, there are three categories, RF signal, optical reflection,
and thermal emission, as shown in Table 2.

3.1 Detection via RF Signals

The key idea of RF-based detection lies in that wireless monitoring
devices rely on Wi-Fi transmission, which leaks device informa-
tion via signals in the radio spectrum [51]. Commercial detectors

Table 2: Comparison of HeatDeCam and existing work.

System Channel Detactable Cameras Human
Efforts ReferenceRF Optical Thermal w/o Wireless Wireless

DeWiCam ✓ ✓ [12]
Blink & Flicker ✓ ✓ ✓ [29]
SnoopDog ✓ ✓ [41]

MotionCompass ✓ ✓ [21]
LAPD ✓ ✓ ✓ [37]

Popcultural Thermal ✓ ✓ ✓ [1, 13, 32]
HeatDeCam ✓ ✓ ✓ ✓ This work

=Maximum, =Minimum

on the current market often have coarse granularity and will trig-
ger an alarm if the received RF power in a particular frequency
range is above the configured threshold [43]. However, as these
devices generally do not involve signal analysis adapted for hidden
cameras, they are likely to trigger a high false-positive rate from
surrounding IoTs or Wi-Fi routers. To address the above limitation,
prior studies proposed to improve with fine-grained analysis of the
captured wireless communications [12, 21, 29, 41]. Cheng et al. [12]
proposed to leverage supervised learning to extract and learn net-
work traffic features of wireless hidden cameras, i.e., consisting
of both video and audio streams, to distinguish them from other
network applications. The following work proposed to identify the
causality between physical activities and network traffic patterns.
These activities include adjusting the lighting [29, 41], and motion
stimuli [21]. While these methods can detect spy cameras in certain
cases, they are fundamentally limited to detecting wireless moni-
toring devices only. However, our survey results show that only 6
of the top 10 (i.e., 60%) most popular spy cameras sold on Amazon
support Wi-Fi connection.

3.2 Detection via Optical Reflections

All commercially available spy cameras rely on lenses to capture and
record surroundings. Based on this observation, existing optical-
based approaches rely on optical reflections from the lenses. A
popular consumer detection comes with LEDs of a certain color
(typically red) and a colored-glass viewfinder [26], which are de-
signed to assist users in identifying reflections from the lens. How-
ever, this tool has a narrow range of inspection angles, and it heavily
relies on the experience and expertise of the user to make a judg-
ment call on the surroundings. To overcome this challenge, a very
recent approach, LAPD [37], proposed to leverage the laser time-of-
flight (ToF) depth sensors in the latest generation of smartphones
to automate this process. The working principle is based on the
lens-sensor retro-reflection effect, where embedded cameras reflect
incoming laser pulses at a higher intensity, thereby revealing their
hidden locations. However, even though the detection is automatic,
users need to stand in an ideal approximation (distance of 0.5𝑚) to
the spy camera and carefully scan the object with a specific speed
(0.05𝑚/𝑠). Therefore, this approach takes a significant step forward
but is limited to common drawbacks of the optical vector which
requires the user to pre-identify suspicious objects and have a good
distance and angle to the lens.

As a result, the optical approaches are more generally applicable
to most of the cameras, with and without wireless connectivity,
compared to the RF-based detection mechanisms. It relies on the
user having more expertise in the technology.
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Figure 5: Overview of the HeatDeCam design.

3.3 Pop-cultural Efforts via Thermal Emission

Thermal imaging is a powerful mechanism that allows for inspec-
tion of object temperatures that are otherwise not available via
traditional cameras. Building on top of this capability, its applica-
tion can be seen in the industry, agriculture, medical, and public
security fields [17]. For instance, its application scenarios range
from detecting defects in mechanical parts [2, 47], illegal grow
operations [15, 31], peripheral vascular disorder [5], to concealed
weapons [45]. Recently, there are also attempts to leverage the
unique capability of thermal cameras to detect hidden spy cameras
under the pop culture setting [1, 13, 32]. These efforts share a simi-
lar insight as HeatDeCam, that all spy cameras will generate heat
emissions, which can be captured by thermal imagery and serve as
indicators that cameras are present.While these efforts demonstrate
the feasibility of thermal imagery as a viable vector for detection,
existing work primarily relies on user expertise and experience for
interpreting the images and scenarios. Unfortunately, distinguish-
ing subtle differences in heat dissipation patterns is not always easy
for new users. To make this promising approach more user-friendly,
we lean on machine learning to complement the manual effort in
detection and identification.

4 ATTACK MODEL & SYSTEM OVERVIEW

4.1 Attack Model

In this paper, we consider a strong attack model where the attacker
can install spy cameras in a target environment (e.g., hotel room and
office) inconspicuously and has full control over the spy cameras,
including the camera model selection and where/how the camera
is installed in the environment. More specifically, the attacker is
assumed to have the following capabilities:
• Concealed Placement. The attacker will try his/her best to hide
spy cameras for stealthiness, and the hiding locations will depend
on the type and the disguise of the cameras (Section 2.1).

• ContinuousMonitoring.We assume the attacker will keep the
cameras on to continuously monitor the victim’s activities.

• Heterogeneous Cameras. For a higher coverage of the moni-
tored space and to avoid being discovered easily, the attacker can
employ multiple spy cameras of different types. Such multiform
heterogeneity makes it more challenging for detection.

• Limited Control. The attacker may modify the configurations
and functionalities of spy cameras such as disguising appearance
and connectivity, but is not capable of hacking into the user’s
smartphone to disrupt the detection process of HeatDeCam.

4.2 System Goals

Design Objectives of HeatDeCam. The proposed HeatDeCam
needs to meet the following design objectives.
• Robustness. It should have high detection accuracy (i.e., true
positives) and acceptable false positives, with robustness against
environmental variations such as scenarios and light conditions.
It should be able to identify spy cameras in the area of interest,
regardless of camera types and placement positions.

• Usability. It should be able to provide visual information to help
users to discover spy cameras. The user operating HeatDeCam
does not need to know the working principles of spy cameras.

• Efficiency. HeatDeCam is envisioned to be compatible with
ubiquitous smartphones, and is capable of detecting spy cameras
in real-time. Therefore, the technique needs to be efficient in
terms of computing resources and time consumption.

4.3 System Overview

The overall design is shown in Figure 5. There are four technical
challenges in design. (1) First, the thermal camera module involves
a displacement between the thermal and visual lens, resulting in
misalignment between thermal and visual images. To solve this is-
sue, the thermal and corresponding visual images will be processed
by thermal-visual registration to eliminate the misalignment. (2)
Second, spy cameras are often surrounded by various objects in dif-
ferent environments that will inevitably interfere with the detection
process. To filter out some irrelevant information associated with
non-heating objects, we extract soft masks based on the thermal
images and apply them to the alpha channel of the visual images.
(3) Third, the processed thermal and visual images will be fed into a
Deep Neural Network (DNN) model for camera detection. In order
to handle complicated practical scenarios with efficient computa-
tions, we employ a lightweight ResNet-based convolutional neural
network with attention modules to focus on important features
from the thermal and visual input pairs. (4) To provide better usabil-
ity and assist users to locate hidden cameras, HeatDeCam adopts a
Class Activation Map (CAM) [40] to visualize the decision-making
process and highlight the potential hiding placements.

5 SYSTEM DESIGN

Thermal cameras incorporate specialized filters to capture infrared
emanation of objects, where its intensity has a positive correlation
with the temperature according to the Stefan-Boltzmann Law [18].
Based on this principle, HeatDeCam incorporates algorithms to
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Figure 6: Displacement of lens causes misalignment be-

tween thermal and visual images.

analyze thermal imagery obtained from a portable thermal camera,
which captures heat signatures. In this section, we will describe
our algorithm design, detection model, and visualization scheme.

5.1 Thermal-visual Correlation

While thermal imagery alone shows the heated source, it lacks
high dimensional information such as color and edge that are cru-
cial for modern computer vision algorithms to enable inference
of higher-level semantics. For instance, picture frames should not
have unique heat signatures on the top of the frame. However, even
though it is beneficial to have correlations between thermal and
visual information, there are two technical challenges. First, the
raw thermal and visual images directly captured from cameras do
not align due to displacements of the two lenses. Second, heated
areas are highlighted in the thermal images, while such focus does
not present in visual images. To solve these issues, we incorporated
image registration and soft masking mechanisms.
Thermal-visual Registration: As shown in Figure 6, the lenses
that capture thermal and visual images are separated due to their
distinct hardware structure. The existence of such displacement
between the lenses causes the misalignment between the thermal
and visual images. For example, when capturing the same spy cam-
era with two lenses simultaneously, the camera may appear closer
to the bottom half in the visual image (taken by the upper lens)
but appear closer to the upper half in the thermal image (taken by
the lower lens). Such misalignment varies based on the distance
and angle of the object with respect to the camera. To handle this
challenge, we used image registration based on discrete Fourier
transform [34]. Given a thermal image and its corresponding visual
image, the registration algorithm will calculate the differences be-
tween scale, rotation, and position of image features, and the visual
image will be transformed to align with the thermal image.
Automatic Soft Masking: A naive approach to filter unnecessary
information is to use the thermal information as a mask to remove
all other areas to force the attention of the neural network on heated
objects. However, this also inevitably eliminates the necessary de-
ployment context information that is important for spy camera
detection. Therefore, we propose to narrow down the search space
by applying a soft mask. By applying the extracted soft masks from
thermal images to the alpha channel of visual images, it is possible
to essentially “bleach” the less-important areas. Specifically, the
thermal image is first converted to a single-channel grayscale im-
age and smoothed using a Gaussian kernel. Then we apply Otsu’s
method [33] to find the optimal threshold𝑇 from the pixel intensity
histogram that maximizes the inter-class variance after binarization.
Next, a soft mask 𝑀 is generated by comparing each pixel value
with the threshold. For each pixel value 𝑥𝑖, 𝑗 , its corresponding mask

Figure 7: Architecture of the ResNet-based detection model.

value is computed as:

𝑀𝑖, 𝑗 =

{
𝑥𝑖, 𝑗 , if 𝑥𝑖, 𝑗 ≤ 𝑇

1 , otherwise
(1)

meaning that the pixels highlighted in thermal images will be em-
phasized by a given alpha value of 1, and other areas will be given
smaller alpha values depending on their heat in thermal images.
The extracted masks will then be applied to the corresponding
visual images by serving as the alpha channel.

5.2 Detection Model

With the processed thermal and visual image pairs, we designed a
DNN model for feature extraction and camera detection. As shown
in Figure 7, the proposed model consists of two sub-networks.
Attention-based Convolutional Feature Extractor: Following
existing studies in thermal image analysis [7, 35], we employ a con-
volutional neural network based structure to extract useful features
for spy camera detection. For computational and storage efficiency
on mobile devices, the proposed feature extractor adopts a light-
weight ResNet-18 [20] structure, which consists of 18 convolutional
layers of 3 × 3 kernels with skip connections. We also evaluated
several alternative neural network structures during preliminary ex-
periments, such as MobileNet [22], Inception [46], and dual feature
extractors. The experimental comparison is available in Section 7.4.

To handle the varying environmental factors (e.g., light condi-
tions, viewing angles) and further enforce the model to focus on crit-
ical features, we adapt the Convolutional Block Attention Module
(CBAM) [50] to increase the representation power. CBAM achieves
this by sequentially applying a channel attention sub-module and
a spatial attention sub-module, which learns to emphasize rep-
resentative features along the channel axes and the spatial axes.
Specifically, the network is built on residual blocks with CBAM em-
bedded, each of which implements the following operations: given
an input feature map 𝐹𝑖𝑛 ∈ R𝐶×𝐻×𝑊 and a set of weights𝑊 , the
block first computes an intermediate feature map 𝐹 via convolution
𝐹 = 𝑐𝑜𝑛𝑣 (𝐹𝑖𝑛,𝑊 ). Next, the attention module sequentially infers a
1D channel attention map𝑀𝑐 ∈ R𝐶×1×1 and a 2D spatial attention
map𝑀𝑠 ∈ R1×𝐻×𝑊 . The inferred attention maps are then applied
to the feature map sequentially:

𝐹 ′ = 𝑀𝑐 (𝐹 ) ⊗ 𝐹,

𝐹 ′′ = 𝑀𝑠 (𝐹 ′) ⊗ 𝐹 ′,
(2)
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Figure 8: Selected spy cameras included in the dataset.

where ⊗ denotes element-wise multiplication. Finally, the output
feature map is the sum of the refined feature map 𝐹 ′′ and the input
feature map passed along the skip connection, 𝐹𝑜𝑢𝑡 = 𝐹 ′′ + 𝐹𝑖𝑛 .
Built on such residual blocks, the feature extractor will produce a
set of meaningful feature representations for each pair of thermal
and masked visual image inputs.
Classifier: The classifier contains a fully-connected layer that takes
the extracted latent representations from the feature extractors
and outputs the predicted probabilities. The shape of the output
probability vector is adjusted according to the specific task, i.e., spy
camera detection (binary classification) or spy camera recognition
(multi-class classification). In either case, the classification loss 𝐿𝑐
can be measured using the cross-entropy function.

5.3 Grad-CAM Visualization

To achieve the design goal of usability and improve model explain-
ability, we further employ Gradient-weighted Class ActivationMap-
ping (Grad-CAM) [40], a gradient-based approach for visualizing
the decision-making process of the detection model by highlighting
class discriminative regions. Using the gradients of the target con-
cept (i.e., spy camera) flowing back to the final convolutional layer,
Grad-CAM produces a localization map that highlights the regions
that are important for prediction. The resulting visualization can be
used to inform the user about highly suspicious regions and further
assist the user to find the potential spy cameras.

6 THERMALVIEW DATA COLLECTION

The collected dataset incorporates four unique characteristics. First,
it was collected in six rooms across four types of scenarios. These
rooms include two rooms in a hotel, two rooms in anAirbnb, and two
rooms in an office. Second, it was collected by 5 unique individuals,
accounting for the differences in how people deploy objects and how
users hold their phones when inspecting. Third, our dataset was
collected at different times of the year, accounting for temperature
and lighting variations. To summarize, this dataset was collected
in uncontrolled settings, and more details will be discussed in the
rest of the section. To further evaluate our system under an adverse
environment where the entire space is heated, an additional dataset
ThermalView-Adv was collected in a high ambient temperature
for evaluation on adverse temperature environments, which will
be described in Section 7.6 with experiments.

(a) Hotel (b) Office

(c) Airbnb bedroom (d) Airbnb bathroom

Figure 9: The environments contained in ThermalView.

6.1 Target Spy Cameras

The spy cameras included in the dataset are important, as they need
to be representative of the market and real-world scenarios. There-
fore, we surveyed the most popular spy cameras sold on Amazon
and eBay, and selected a collection of 11 spy cameras including 3
inconspicuous cameras, 6 electrical camouflaged cameras, and 2
non-electrical camouflaged cameras. As shown in Figure 8, these
cameras differ in a variety of attributes, including camera types,
manufacturers, connectivity, disguises, and costs. The wide range
of varieties and their popularity help us gain a set of heterogeneous
spy cameras that are most likely to be deployed in real life.

6.2 Deployment Environment

Selecting deployment environment also plays an important role and
is a non-trivial task. The hiding placements should fit the disguise
of each spy camera, for example, a camera disguised as a charger is
generally plugged into an outlet, and a camera concealed as a picture
frame is often placed on the table. Thus, such environments should
cover large diversity in the real world. We define an environment
with three factors: scenario, room, and corner.
Scenario: A scenario is the type of space. In our dataset, we chose the
three scenarios that are reported to contain spy cameras frequently,
i.e., hotel, Airbnb, and office.
Room: It specifies the room in which the images are collected, as
a scenario may host several different rooms. There are six rooms
included in total, the office scenario hosts two rooms, and the hotel
and Airbnb scenarios each includes a bedroom and a bathroom.
Figure 9 shows four rooms that are included in the hotel, office, and
Airbnb scenarios.
Corner : Even within a single room, objects can vary depending on
the specific areas. For instance, a bedside table generally supports
small IoTs like electronic clocks, while large appliances such as
televisions are less likely to occur in this corner. There are thirteen
corners in total, with four corners in the office scenario, four corners
in the Airbnb scenario, and five corners in the hotel scenario.
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6.3 Data Collection Strategy

The procedure of data collection can be summarized into two stages,
scenario setup and image collection. In the first stage, we prepared
various regular objects that are normally used in real life, such as
voice assistants, iPad, laptops, smart phones, alarm clocks, headsets,
routers, mouse & mouse pad, file organizers with books, pens & pen
case, bottles, cups, snacks, tissue boxes, staplers, etc. Then we asked
5 participants to place these regular objects and change deploy-
ments based on their preferences. After each participant finished
setting up the scenario, he/she conducted the second stage of image
collection. In a single corner environment, the trials consisted of
visual and thermal images being captured with the variation of
four factors: (1) objects deployment in the room, (2) distance from
the spy camera, (3) angle with respect to the spy camera’s field of
view (FOV), and (4) the ambient light condition. The participant
was guided to hide the target spy cameras in the corners and repeat
trials of taking pictures. After a participant finished collecting data
in the scenario, we recycled deployed objects and guided the next
participant to repeat the above steps.

To protect the participants’ privacy, they were informed of the
existence of hidden cameras in the room, and instructed to only
take pictures when they were alone with no private items (e.g.,
driver license, family portrait) present. They were required to hold
their phones as they would in a photography position. To avoid
desirability bias, the participants were not made aware of the pur-
pose of the data collection, which would have otherwise motivated
them to take pictures with significant efforts that could best benefit
the research (e.g., take clearer pictures at close distances).

By repeating these steps, the trials resulted in a total of 20474
thermal and visual images, of which 10738 (52.45%) images include
spy cameras, while the rest 9736 (47.55%) images do not. A summary
of the collected dataset is present in Table 3.

6.4 Data Annotation

The acquired thermal and visual images were labeled manually. For
effective pairing of thermal images and the corresponding visual
images, the two images in a pair share the same name based on the
time (year-month-date-hour-minute-second) that the pictures were
taken, while visual images have additional "-orig” at the end for
distinction. We also manually checked and discarded the blurred
pictures due to significant motion when capturing. We also created
a separate csv file to record the attributes of each image. The file
will specify the image name, image type (whether it is a thermal or
visual image), numbered label of the spy camera inside the image,
scenario label, and room label. We use 0 to represent no camera
inside, and label 1 to 11 to represent each camera model.

7 EVALUATION VIA THERMALVIEW

7.1 Measurement Results

We randomly selected 80% data samples from the ThermalView
dataset for HeatDeCam model training and used the rest for evalu-
ation. During preprocessing, the image data was first normalized
to (0, 1) scale and then resized to 256× 256 pixels resolution. As for
data augmentation, we randomly cropped the image to 224 × 224
and applied a random horizontal flip. The model is trained on the

Table 3: Dataset statistics.

Image Types Scenarios
Office Hotel Airbnb

# of Benign Images 3440 378 5918
# of Spy Camera Images 4816 1552 4370

# of Total Images 8256 1930 10288

cross entropy loss for a total number of 40 epochs, using the Adam
optimizer [27] with 𝛽1 = 0.9, 𝛽2 = 0.999, and an initial learning
rate of 0.001 (decayed by 0.1 every 10 epochs).
Binary Classification: Figure 10(a) presents the binary classifica-
tion results (i.e., whether the image contains spy camera) under
various environments (i.e., office, hotel, apartment, and the overall
dataset). We observe that our model is able to achieve a high detec-
tion accuracy (> 0.95) and recall (> 0.97) across all environment
settings, which demonstrates the effectiveness of HeatDeCam.
Multi-class Classification: Figure 10(b) shows the confusion ma-
trix of the multi-class classification result, where class label 0 rep-
resents the benign case (no spy camera) and labels 1-9 represent
different types of spy cameras. We observe that our model can
correctly differentiate different types of spy cameras with a high
accuracy of 0.960.
Previously Unseen Cameras: For practical usage, it is important
to examine how HeatDeCam performs in detecting cameras that
are previously unseen in the training set. We split ThermalView
based on the camera models, then randomly selected three cam-
eras and separated the corresponding images, together with 20% of
benign images to form the test set. As such, these three cameras
are previously unseen by the model during the training process.
The experiments were repeated ten times, each with different cam-
era models included in the test dataset. HeatDeCam achieved a
mean accuracy of 0.935 in average of ten trials, showing the ro-
bustness against previously unseen camera models. Compared to
previous results, the slight performance degradation indicates that
different camera models carry variations in their heat patterns. As
expected, the learning model is not completely generalizable to all
new cameras.
False Positives of Electronics: In order to avoid missing spy cam-
eras, false positives are almost inevitable. However, too many false
positives can significantly harm the usability of the system. A major
challenge in this aspect is to distinguish spy cameras from regu-
lar electronics because they both emit heat capturable by thermal
cameras. To this end, we evaluated the false positives using 1269
sets of pictures across three scenarios containing a voice assistant,
a JBL speaker, an iPad, two laptops, three phones, a power bank,
a charger plug, a power hub, an alarm clock, a headset, a pair of
earbuds, a wrist band, a router, and a computer mouse. We utilized
the previously trained model for binary classification, where 98.2%
(n=1246) of the images were correctly classified as non-camera and
only 1.8% of the images triggered false positives. One mitigation
mechanism for the false positive is to encourage the user to move
closer to the suspected object, and generally with fewer objects in
view, the false positive rate will also drop.
Model Size &Detection Time: The model size and detection time
are also critical for usability. The model is measured at 45.4 MB,
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Figure 10: Binary (left) and multi-class (right) results.

which is relatively lightweight to be stored on mobile devices. To
evaluate the detection time, we used the well-trained model to
sequentially make predictions for 100 thermal-visual image pairs.
The measured average inference time on a NVIDIA RTX 2080TI
GPU is 12 ms, which is sufficient for supporting real-time detection.

7.2 Ablation Study

We conducted an ablation study across three scenarios to inves-
tigate the effectiveness of the components in HeatDeCam. The
results are shown in Table 4. We observe that the performance of
HeatDeCam degrades with the removal of the registration process
and CBAM attention module, indicating that these components
indeed improve camera detection. Notably, the removal of the at-
tention module results in a more significant performance decrease
(mean accuracy decrease of 2.7%) compared to the registration
(mean accuracy decrease of 0.6%). This is because the misalignment
between thermal-visual images is generally of a lesser magnitude
and therefore has less impact on performance. However, the atten-
tion module plays an important role in HeatDeCam by enabling
the algorithm to focus on key features, such as the heat pattern, that
can best distinguish cameras. The removal of this critical module is
likely to result in a significant performance decrease.

Table 4: Ablation study results.

Evaluated System Office Hotel Airbnb
Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.

HeatDeCam 0.982 0.997 0.975 0.967 0.989 0.971 0.976 0.965 0.976
HeatDeCam

w/o Registration 0.978 0.988 0.980 0.961 0.975 0.978 0.969 0.958 0.966

HeatDeCam
w/o CBAM 0.963 0.966 0.974 0.953 0.964 0.977 0.928 0.950 0.922

Acc.=Accuracy, Rec.=Recall, Prec.=Precision

7.3 CAM Visualization

The CAM-based visualization is designed to present users with
potential locations of spy cameras detected in the captured im-
ages. This functionality is crucial for usability, and therefore it is
important to validate if it properly highlights the desired areas.

Figure 11 shows visualization results on locating a spy camera
disguised as a picture frame detected in two challenging environ-
ments, i.e., other heat sources exist and the distance is large. The
three figures at the top show the first challenging scenario where
the spy camera is deployed in the office and surrounded by other

Figure 11: CAM visualization of a spy camera disguised as a

picture frame in the office (top) and hotel (bottom).

heat sources, such as voice assistants. While heat emanation from a
voice assistant is obvious and may mislead users, the visualization
highlights only the picture frame and therefore eliminates environ-
mental interference. The three figures at the bottom show another
challenging scenario, where the user is away from the spy camera.
Therefore the heat emanation from the picture frame is not visible
to the naked eye. Our algorithm shows robustness in such scenar-
ios by emphasizing the picture frame areas. In these situations,
it could be difficult for a human to locate the spy camera when
only presented the thermal images, given the multiple heat sources
and invisible heat patterns. However, our algorithm is shown to be
robust for localization under such challenging circumstances.

7.4 Alternative Designs

In this section, we evaluated the performance of HeatDeCam with
alternative technical designs mentioned in Section 5.

There are four alternative designs in question. 1) Thermal Input
Only: As thermal images carry the most critical features - heat pat-
terns, it is possible that algorithms can only rely on thermal images
to detect spy cameras. As such, visual input will not be stacked
with the thermal images. 2) Thermal/Visual Dual Feature Extractors:
Besides stacking thermal and visual inputs for detection, it is also
possible that they each go through a separate feature extractor. The
parameters of feature extractors can be updated independently. 3)
Hard Mask: Soft mask is designed to manipulate the transparency
of image regions to reduce the input of less-important information.
In contrast, hard mask is an alternative where those regions will be
completely filtered out, i.e, replaced with black or white. 4) DNN
Architecture: The architectural design of DNN models is a major
research direction in the field of machine learning, and numerous
architectures have achieved state-of-the-art performance in differ-
ent application domains. In this study, we evaluated two of the most
well-known models, MobileNet [22] and Inception [46].

The evaluation results are shown in Table 5. We observe that
modifying DNN architectures and adopting a dual-extractor struc-
ture has a relatively small impact on performance compared to
the current optimal design. This is because the major functional-
ity (i.e., extract features) of these DNN models is attributed to the
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Table 5: Performance of alternative design elements.

Alternative Designs Accuracy Recall Precision
Thermal Input Only 0.919 0.923 0.930

Dual Feature Extractors 0.955 0.951 0.966
Hard Mask 0.824 0.840 0.843

DNN Model MobileNet 0.970 0.965 0.980
Inception 0.952 0.940 0.971

Figure 12: Intermediate results of two cameras disguised as

a charger (top) and a bulb (bottom). Highlighted areas con-

tribute most to the detection.

convolution layers, which are the foundations of these CNN-based
neural networks. As a result, the variations in their architectures
only slightly affect the effectiveness of feature extraction and rep-
resentation. In contrast, removing visual input and applying hard
masks to entirely filter out image regions that display less heat can
significantly degrade performance. This can be attributed to the
elimination of some critical features used for detection. We further
demystify those features through experiments in Section 7.5.

7.5 High Dimensional Feature Space

Understanding the key features extracted from thermal-visual in-
puts is essential for future explorations. In general, DNN-based
machine learning algorithms work by mapping input to a high-
dimensional feature space where the data are expected to be more
separable [10, 16]. While those features enable classifiers to achieve
promising performance, interpreting their exact physical mean-
ings and how they aid the decision-making process remains an
open research problem [28, 36]. In this effort, we validated two key
features by 1) analyzing intermediate results of the model and 2)
experimentation in the format of an ablation study.
Heat Patterns: The key idea behind HeatDeCam lies in the unique
heat patterns of spy cameras, which display on thermal images as
spatial distributions and edges. These features are further validated
in the intermediate results extracted from the model. Figure 12
shows some examples of intermediate results, where the highlighted
areas represent the regions that contribute most to the prediction.
These two examples show that the model primarily focuses on the

Table 6: HeatDeCam performance with removed features.

System Accuracy Recall Precision
HeatDeCam 0.968 0.978 0.976

w/o Heat Patterns 0.769 0.746 0.816
w/o RGB Colors 0.932 0.914 0.961

heated regions of cameras even though there are other heat sources.
To disrupt this feature in the experiments, we shuffle the spatial
distribution of the raw infrared data within the heated regions while
maintaining their statistical distribution. As shown in Table 6, the
detection accuracy degrades significantly when the heat dissipation
pattern is removed, showing that the uniqueness of the spy camera
thermal signature is a key feature used by the model.
RGB Colors: RGB colors are important features for human visual
systems [8] and have proven effective in various image recognition
tasks [19, 30]. They are high-dimensional by nature, as they are rep-
resented by three channels, each with the same size of the original
images. In the specific task of spy camera detection, colors contain
rich context information, such as the type of object the spy camera
is disguising as. For experiments, we converted visual inputs from
RGB to grayscale before they were fed into HeatDeCam. As shown
in Table 6, by removing the RGB color, the accuracy decreases from
0.968 to 0.932. It is also interesting that the impact of removing the
heat pattern is significantly larger than removing the RGB color,
reinforcing the importance of heat dissipation.

7.6 Results in an Adverse Environment

All physical vectors have their own limitations, and can be “satu-
rated” by the same physical signals within the target environment.
Thermal is not an exception. Similar to omnipresent wireless sig-
nals for RF-based detection, thermal detection approaches, such as
HeatDeCam, can be impacted by the ambient temperature, and it
is important to understand such limitations.
DataCollection:We collected an additional dataset ThermalView-
Adv in a top floor bedroom during summer, where the average
room temperature reached 104.6◦F. ThermalView-Adv is a dis-
tinct dataset from ThermalView that contains 1016 sets of images
(837 with cameras and 179 benign images), involving 9 cameras,
8 electronics, and 10 non-electronic objects. The room setup and
measured temperature are shown in Figure 13(a). Figure 13(b) and
13(c) show examples of heat emissions from a camera concealed
as a lamp bulb and an inconspicuous camera hidden behind books.
Even with the high ambient temperature, the thermal signature
of spy cameras remains visible due to the additional heat from
video recording, this pattern can be further sharpened using the
automatic calibration in either software or hardware.
Evaluation in the Adverse Environment: We conducted two
experiments to validate how such an environment could impact the
performance of HeatDeCam. We first utilized the model trained on
images in regular temperatures (ThermalView) and used the im-
ages in the adverse environment (ThermalView-Adv) for testing
only. The resulting detection accuracy is at 0.951 as compared to the
original 0.968. This shows that our model is relatively robust in such
an adverse environment, while a higher temperature of the ambient
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(a) Room setup (b) A camera concealed as bulb (c) A camera behind books

Figure 13: Experiments in a top floor room representing the

adverse environment, with a temperature of 104.6
◦
F.

and surrounding objects indeed mislead the recognition algorithm
to some extent. Next, we also investigated to incorporate adverse en-
vironment in training to further enhance HeatDeCam.We trained a
model on a combination of ThermalView and ThermalView-Adv
following the same settings, and achieved a detection accuracy of
0.969 and recall of 0.983. It shows that adverse environment can be
mitigated by involving corresponding data in the training process.

8 ONLINE SURVEY STUDY

To understand how well the design empowers users to detect spy
cameras, we conducted online surveys to study the efficacy. Addi-
tional details on the survey (including previous rounds) are available
in the technical report on the project website. We obtained formal
approval for these experiments from our university’s Institutional
Review Board (IRB).

8.1 Survey Design

The survey was fully structured and designed prior distribution.
All the questions were designed in a multiple-choice manner. The
survey consists of four major components as described below.
Task to Find Spy Cameras: The participants were presented with
5 sets of images and asked to finish the task of judging whether
there are any spy cameras hidden inside. Each set consists of three
images: a visual image as the baseline, and the corresponding ther-
mal and CAM images provided by HeatDeCam for comparison.
We further clarified that the thermal and highlighted images were
two functionalities provided by a system. To make the survey ac-
cessible to the diverse population, we refer to the CAM image as
“highlighted image” in the questions. For each test, the participants
were first presented with the visual image only and asked if they
believe there are any spy cameras hidden inside (“Yes”, “No”, “I
don’t know”), and how confident were they about the judgment
on a 5-point scale. They were then presented with the thermal and
CAM images placed side-by-side and asked the same question for
their judgments. One example of a set of such images is shown in
Figure 11.
Usability Test: Followed by the five tests, we asked participants
to rate the usability of our scheme with a standard system usability
scale (SUS) [6, 9], which consists of ten questions with five response
options (from strongly agree to strongly disagree).
Cost:We also try to measure users’ acceptability of hardware costs.
The question is phrased as, “Please rate your willingness to pay
$100 for a thermal camera that can be attached to your phone and

used to detect spy cameras.” The choices rate extremely unwilling
to extremely willing on a 5-point Likert scale.
Demographics: In the end, the participants were asked about their
age range, gender identity, and previous knowledge of detecting
spy cameras. All the answers were collected anonymously.

8.2 Survey Results

A total of 106 people participated in the second-round online survey.
The results are summarized from the following perspectives.
Effectiveness: Based on the responses to the tasks, we defined a
score metric to calculate the detection results, 𝑆𝑐𝑜𝑟𝑒 = 𝐷 × 𝐶𝑜𝑛𝑓

5 ,
where 𝐷 represents the decision correctness (1 point for a correct
answer, -1 for a wrong answer, and 0 for “I don’t know”), and𝐶𝑜𝑛𝑓
is the rated level of confidence. Such multiplication involves both
user judgment and their confidence, in an attempt to reduce the
impact of random guessing. The score indicates the correct level of
participants that successfully identify spy cameras. The range for
the score is [−1, 1], with a higher score indicating better judgment.
For the given 5 sets of images, the participants achieved an average
score of −0.38 with only visual images, which indicates that they
were more likely to fail to identify the existence of spy cameras
hidden in the visual images. However, after they were presented
with the thermal and CAM images, the average detection score
increases to 0.82. We denote such detection score with visual image
only as V score and that with images provided by HeatDeCam as
T score. Based on these two sets of scores quantifying the detection
effectiveness with and without HeatDeCam, we conducted the
Welch’s t-test [48] to further confirm their statistical significance
in difference, under the null hypothesis that “there is no difference
between paired V scores and T scores”. We obtained a test statistic
of 59.82 with 159.84 degrees of freedom (𝑝 < 2−16) from sample
data, and hence we reject the null hypothesis at 1% significance
level, implying that such a difference is significantly different from
zero. As a result, it indicates that thermal and CAM images are
helpful to the participants for spy camera identification.
Usability:We calculated and normalized SUS scores for individual
responses, and the mean SUS score for our provided scheme is
92.57 (±5.89). With reference to SUS on a curve with percentile
ranks [38, 39], our scheme achieves a SUS score above average of
68 (at 50% percentile), validating the usability.
Costs: In terms of cost, most participants (n=96, 90.6%) rate their
willingness to pay as 4 to 5. Specifically, 22.6% (n=24) participants
rate 5 and 67.9% (n=72) rate 4, leading to an overall meanwillingness
to pay of 4.09. The results indicate that such cost is acceptable to
the majority of participants.
Demographics: The participants consist of 68.9% male and 31.1%
female. Besides, most of them (n=72, 67.9%) aged 18-34, 16% (n=17)
aged 35-44, and 16% (n=17) aged 45 and above.

9 IN-PERSON USABILITY TEST

To test the effectiveness and usability of HeatDeCam in practical
usage, we also conducted an in-person usability test followed by
observational interviews. The experiments and interviews were
formally classified as exempt by our university’s IRB. In these exper-
iments, participants were separated into four groups, each assigned
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Table 7: Deployed spy cameras in the experiments.

Type Wi-Fi Disguise Hiding Place Denotion
Inconspicuous N - Under the book shelf I-N
Inconspicuous Y - Behind the books I-Y
Non-electrical Y Frame On the side table NE-Y
Electrical Y Clock On the desk E-Y
Electrical N Charger Plugged to the socket E-N

one detection method. As is shown in Figure 14(a), the evaluated
detectors involve HeatDeCam and three state-of-the-art detection
methods as baselines. These baseline methods include a G319 RF-
based detector, and a red LED detector in the flashing mode and
in constant lighting mode, respectively. After training on how to
use the detection tool, participants were asked to use it to find spy
cameras hidden in a pre-set scenario within two minutes. During
the following interviews, the interviewees were asked about their
user experience with the given tools.

9.1 Recruitment Strategy

Detecting spy cameras is a human-in-the-loop process that involves
users’ empirical judgments. The participants’ prior knowledge and
detection experience can affect the detection results. As such, we
first asked the participants to rate their prior knowledge and experi-
ence in the pre-experiment survey, and the answers were collected
in an anonymous manner.

Specifically, we surveyed age range, gender identity, and partici-
pants’ self-estimated knowledge of detecting spy cameras on a scale
from 1 to 10. There were 36 participants in total, consisting of 17
(47.2%) male and 19 (52.8%) female. Additionally, 24 (66.7%) partici-
pants aged 18-29, 9 (25%) participants aged 30-50, and 3 participants
(8.3%) aged over 50. As for the prior knowledge of detecting spy
cameras, many participants (n=12, 33.3%) estimated themselves to
have the least knowledge with a score of 1, and 4 participants pos-
sessed the highest knowledge level among all participants with a
score of 6 out of 10. As such, no participant self-reported advanced
expertise or experience in detecting spy cameras. Based on the
survey results, we grouped all the participants into four groups by
evenly assigning people with similar prior knowledge to different
groups. As a result, each group was assigned 9 participants, and all
groups held a similar overall knowledge level.

9.2 Experiment Setup

The test site was set up in a separate study room. To simulate
practical usage of HeatDeCam, the room was not included in the
ThermalView, and the room set-up is shown in Figure 14(b). With
the spy cameras and other regular objects deployed in the room,
we invited four volunteers to enter the room and asked them to
find hidden cameras within two minutes. After they found cameras,
we redeployed the selected spy cameras to new hiding places, and
repeat the process until they could not find any cameras with raw
eyes. This was done to ensure that all the spy cameras were properly
hidden (concealed placement in the attack model). Note that these
four participants were not involved in the following experiments.
As a result, 5 spy cameras were deployed as summarized in Table 7,
including two small hidden cameras, two electrical camouflaged
cameras disguised as a charger and a clock, and one non-electrical

(a) RF detector, red LED detector, and ours (b) Experiment room set up

Figure 14: Environment set up and evaluated detectors.

Table 8: In-person experiment results.

Tool Num of Participants Who Detected Cameras ADR FPI-N I-Y NE-Y E-Y E-N
HeatDeCam 9 7 7 8 8 86.7% 1

Flash 3 1 6 3 5 40% 3
Constant 2 3 5 2 7 42.2% 2

RF 1 4 6 7 3 46.7% 8

ADR=Average detection rate, FP=False positive

camouflaged camera disguised as a picture frame. Among these
cameras, three of them support Wi-Fi transmission. These cameras
were selected to simulate heterogeneous cameras in our attack model.
The denotations of these cameras are based on their types and
connectivity (whether support Wi-Fi transmission) and will be
used as an abbreviation in the illustration of detection results.

9.3 Experiment Process

All the spy cameras have been kept running for an hour prior to the
experiments, which was done to simulate continuous monitoring in
the practical attack model. Before the participants entered the room
and began camera hunting, they were informed of the task of “try to
find suspicious hidden spy cameras within two minutes.” However,
they were not informed of the number and types of spy cameras
hidden in the room. The experiments began once we ensured that
the participant was familiar with the detection process using the
given tool. The participants were invited to the set-up room one
by one, each was given two minutes to find hidden cameras. After
the time limit, each participant was notified to exit the room, and
the organizer would enter the room to help verify the spy camera
identification results. Then, the user was asked to describe his/her
user experience and indicate whether the given tool was helpful
as “helpful”, “maybe helpful”, or “not helpful”. All the surveillance
recordings were permanently deleted after the experiments.

9.4 Experimental Results

The evaluation metrics include detection rate calculated with the
number of identified cameras, false positives, and usability. The
detection rate and false positive are measured quantitatively while
usability was assessed based on the post-experiment interview.
Specifically, the average detection rate is calculated as the average
detection rate of participants in a group, and false positive refers to
the number of objects that were falsely suspected as spy cameras.
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Detected cameras: Although the in-person experiment was con-
ducted in a new room that is not included in ThermalView dataset
on which the algorithm was trained, it shows the transferability
of our algorithm which can reliably recognize spy cameras in new
environments. The number of participants that detected each spy
camera is shown in Table 8. Our designed HeatDeCam achieved
the highest detection rate of 86.7% among all detection methods
due to the following advantages. First, our method was shown
effective in detecting spy cameras with and without wireless con-
nections, whereas users with the G319 RF-based detector were less
successful in detecting cameras without wireless connections (I-N
and E-N). Second, flash and constant methods achieved a similar
detection rate, and they were less impacted by connectivity but
were less useful when detecting I-N, I-Y, and E-Y cameras. After
interviewing users, we found this was because users were not able
to see the reflection spot since the cameras were properly hidden
under the bookshelf and behind the books, respectively. Besides,
the E-Y camera disguised as a clock has a glass in front of the cam-
era lens, which therefore reflected most of the lights and hindered
the reflection-based detection. Our method does not exhibit such
limitations in practical usage.
False positive: HeatDeCam has one false positive during the ex-
periments. It was because the user mistook a regular alarm clock
for a spy camera, although, our system did not indicate so. As a
comparison, flash and constant lighting with an LED detector have
3 and 2 false positives, while the G319 RF detector exhibits the
worst false positive among all these four compared methods. Based
on the post-experiment study, it was because the G319 detector
kept beeping when close to some regular objects due to the nearby
electronics like wireless mouse. Such coarse-grained indicators mis-
led the participants to take more false positives and downgraded
the usability.
Usability: We also surveyed participants’ user experience after
the experiments. Most participants (n=34, 94.4%) indicated that our
HeatDeCam prototype was “helpful” in aiding in detecting spy
cameras. Specifically, users mentioned that the thermal view on the
app was helpful in quickly finding cameras hidden behind obstacles
(e.g., books) and emanating significant heat. The first participant
indicated “not helpful” for our tool because the phone frequently
went to sleeping mode due to monitor protection settings, which
was fixed for the following participants. Two participants indicated
“maybe helpful” because they thought the app’s UI design could be
further simplified to achieve better usability.

10 LIMITATIONS

Device Cost: Compared to existing work that relies on network
analysis using mobile devices, the prototype of HeatDeCam re-
quires a thermal camera attachment that costs $100. However, such
thermal cameras can be built as low as $26 with a dongle [14]. Be-
sides, our survey results show that most people are willing to pay
this amount to protect their privacy (Section 8.2). Therefore, we
believe the cost of our method is acceptable.
New Cameras and Environments: Although we have covered
as many types of cameras and deployment environments in the
ThermalView collection and experiments as possible, it is hard to
enumerate all the spy cameras and rooms. However, our evaluation

on previously unseen cameras, and the in-person experiments con-
ducted in a new room that was not included in the ThermalView
show preliminary evidence of the transferability of our algorithm,
where users were able to localize almost all spy cameras equipped
with our developed app. We also envision that our method could
further incorporate users’ input during their usage, supplementing
the data set and improving the performance.
Participant Recruitment: During the experiments, we grouped
participants into four groups based on their prior knowledge and
experience of detecting spy cameras, while disregarding the age
distribution. This is because we would consider the impact of age to
mainly affect the knowledge of spy camera technology and detec-
tion techniques, which is included in the pre-experiment questions.
Unfortunately, our recruitment of participants involves some level
of sample selection bias due to limited resources. For instance, the
age distribution of invited participants is unbalanced, with the ma-
jority of participants (n=24, 66.7%) aged 18-29, while only include a
few elder participants (n=3, 8.3%) aged over 50. Lastly, the partici-
pants have the highest self-estimated prior knowledge of 6 out of
10, therefore our experiments did not involve people with advanced
knowledge in detecting spy cameras. It is possible that advanced
users may exhibit a smaller performance gap in detecting cameras
when using different tools. However, we consider it as a reflection
of the knowledge level of the general public, where people scarcely
have too much experience detecting spy cameras.
Desirability Bias:We designed the survey and experiments in a
way to mitigate ambiguity and communication inefficiency. For
instance, we refer to the CAM-based image as “highlighted image”
to make the survey questions more accessible to the diverse popula-
tion.We also attempted to mitigate the desirability bias by including
both positive and negative statements to avoid priming, and hiding
the research goal. However, they may still be subject to such bias
that is unobserved from the researcher’s perspective. For instance,
the participants might be aware that they are evaluating the efficacy
of a newly-developed tool (i.e., HeatDeCam). As such, some may
be inclined to over-report positive feedback as they consider it to
be beneficial to and desirable to the researcher.

11 CONCLUSION

In this paper, we surveyed and analyzed existing spy cameras and
detectors from a perspective of security and usability. Based on
identified limitations of existing detection mechanisms and analysis
of real-world scenarios, we leveraged thermal imagery and machine
learning to design an automatic spy camera detection tool, aiming to
offer accurate detection without requiring significant user expertise.
We have collected and open-sourced a large dataset of spy cameras
in different settings to validate our design and for the community.
Our design is further validated using both online and in-person
usability tests.
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