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Abstract—Recent advances in generative AI have significantly
expanded into the realms of art and music. This development
has opened up a vast realm of possibilities, pushing the bound-
aries of human creativity into unexplored frontiers. However,
as generative AI advances, it can replicate artistic styles and
produce new artwork, posing significant concerns for the per-
ceived rarity and value of artists’ creations. In response to these
challenges, it is becoming increasingly crucial to establish and
enforce protective measures that safeguard artists’ copyrighted
work from unauthorized exploitation by generative AI models.
In this paper, we introduce the first defensive mechanism,
HARMONYCLOAK, to prevent the exploitative use of artwork,
specifically in the context of instrumental music, by generative
AI models. Particularly, HARMONYCLOAK employs impercep-
tible error-minimizing noise to make the model’s generative loss
approach zero for these perturbed music data, tricking the
model into believing nothing can be learned so as to disrupt
their attempts to replicate musical structures and styles. By
using a set of intra-track and inter-track objective metrics
and a subjective user study, extensive experiments on three
state-of-the-art music generative AI models (i.e., MuseGAN,
SymphonyNet, and MusicLM) validate the effectiveness and
applicability of HARMONYCLOAK1 in both white-box and
black-box settings.

1. Introduction

In recent years, the world has witnessed the remarkable
rise of generative AI in various fields [1]. From the genera-
tion of high-quality and hyper-realistic images (e.g., DALL-
E-2 [2]) to text generation capable of coherent and contextu-
ally relevant writing (e.g., ChatGPT [3]), generative models
have revolutionized various domains. These advancements
have also made significant strides in music and audio gen-
eration, enabling the creation of original compositions and
elevating the quality of audio experiences [4], [5]. Notably,
AI was instrumental in completing Beethoven’s unfinished
“Tenth Symphony” for his 250th-anniversary celebration in
Bonn [6], and in creating “Tokyo 2020 Beats” for the Tokyo
Olympics [7]. These notable achievements underscore the
profound and far-reaching influence of generative AI.

1. Audio examples of the unlearnable music examples are available for
listening at https://mosis.eecs.utk.edu/harmonycloak.html.

However, the rise of music-generative AI brings a sig-
nificant concern regarding the unauthorized exploitation of
musicians’ composed or copyrighted music [8]. As genera-
tive AI algorithms learn from vast databases of music, there
is a risk that they may inadvertently generate compositions
that bear striking similarities to existing works, potentially
infringing upon copyright protections. This unauthorized
usage of musicians’ intellectual property could have severe
consequences, negatively impacting the livelihoods and cre-
ative rights of these artists. Not only can it result in financial
losses for musicians, but it also undermines their artistic
integrity and hampers their ability to control the distribu-
tion and use of their original compositions [9]. Without
appropriate safeguards and legal frameworks in place, the
exploitation of musicians’ work through generative AI poses
a significant threat to the vibrant and diverse ecosystem of
music creation and the artists who contribute to it.

Prior Research in AI Data Protection. In recent years,
several efforts (e.g., [10], [11], [12], [13]) have been made to
protect data from unauthorized usage by making data sam-
ples unlearnable. This involves introducing imperceptible
error-minimizing noise into the data, effectively degrading
the performance of models trained on the perturbed data.
Unlike conventional data protection techniques, such as dif-
ferential privacy [14] and data-encrypting approaches [15],
[16], unlearnable examples (UEs) do not compromise the
quality of data for normal usage while remaining unex-
ploitable to AI models. Despite their effectiveness, mainly
in image classification, UEs have not been explored much
outside this domain, such as audio. Moreover, these ap-
proaches often assume a white-box setting where full access
to model parameters and architecture is available, limiting
their applicability in real-world scenarios. Another line of
research [10], [17] employs distance-maximizing noise to
substantially shift the image examples within the feature
space, aiming to hinder unauthorized use. However, this
approach does not render the data unlearnable; instead, it
forces the model to learn incorrect representations, adversely
affecting its overall performance.

Challenges. Several unique challenges arise when it
comes to generating UEs for music-generative AI models:
(1) The inherent nature of generative models poses a diffi-
culty as they aim to learn and replicate complex patterns,
structures, and styles of existing musical compositions. Un-
like classification models, generative AI models operate

https://mosis.eecs.utk.edu/harmonycloak.html


fundamentally differently, making it necessary to develop
specialized techniques tailored to the characteristics of gen-
erative models; (2) The lack of a clear ground truth for un-
learnability in the context of generative models exacerbates
the challenge. Unlike in classification tasks where the target
is well-defined, assessing the unlearnability of generative
models becomes more nuanced and subjective; and (3) The
time-sensitive and complex nature of music, with evolving
melodies and rhythms, makes generating unlearnable music
while preserving its essence a significant challenge.

HARMONYCLOAK. In response to these challenges,
this paper proposes HARMONYCLOAK, the first defensive
framework to render unlearnable examples in music, aiming
to assist musicians and the music industry in safeguarding
their content against unauthorized use by generative AI tech-
nologies. In this work, we focus primarily on instrumental
music with varied rhythmic structures and instrumentation,
given the limited availability of open-source generative mod-
els for vocal music. Specifically, we strategically incorporate
imperceptible error-minimizing noise into the music training
samples, effectively minimizing the generative loss for these
perturbed samples to trick the model into believing nothing
can be learned. This incorporation of noise serves as a
protective measure to prevent the informative knowledge
of the data from being learned or extracted. Importantly,
by ensuring that the modifications remain imperceptible to
the human ear through a set of time-dependent optimization
constraints, we can maintain the original essence and artistic
integrity of the music, allowing it to be enjoyed without
compromising its perceptual quality. Our approach also ac-
counts for the music production process, acknowledging that
musicians may convert their compositions into lossy com-
pression formats (e.g., MP3) for distribution. To enhance
the practicality and versatility of the proposed framework,
we have also devised tailored approaches for both white-
box and black-box settings. Our major contributions can be
summarized as:

• To the best of our knowledge, HARMONYCLOAK is the
first defensive framework to make instrumental music un-
learnable for generative AI models. Our approach involves
adding imperceptible error-minimizing noise to the music,
effectively making it unlearnable without compromising
its perceptual quality.

• Our framework goes beyond traditional Lp-norm-based
or psychoacoustic-hiding-based methods by strategically
crafting imperceptible noise leveraging both the human
hearing threshold and dynamic time-dependent musical
characteristics, ensuring minimal perceptual impact while
enhancing effectiveness.

• To ensure the versatility of our method, we have de-
vised tailored approaches for both white-box and black-
box settings to effectively generate imperceptible noises,
ensuring that our method can be applied in a wide range
of practical scenarios.

• Extensive experiments on three state-of-the-art music gen-
erative models, MuseGAN [18], SymphonyNet [19], and
MusicLM [20], across various experimental settings and

TABLE 1: Comparison of noise-based attacks/defenses.
Method Init. Phase Noise Type Objective

Adversarial Attacks Testing Error-maximizing Degrade model performance
Adversarial Training Training Error-maximizing (Min-max) Strengthen model robustness

Data Poisoning Attacks Training Trigger or Error-maximizing Degrade model performance
Unlearnable Examples Training Error-minimizing (Min-min) Make data unexploitable

practical scenarios demonstrate the effectiveness and ap-
plicability of HARMONYCLOAK.

2. Preliminaries
2.1. Unlearnable Examples

For a model to effectively learn, there must be a dis-
cernible knowledge gap between its current understanding
and the new data it encounters, which is quantified by the
loss generated from each data sample. Conventionally, the
concept of crafting UE(s) for classification models are based
on how to modify each data sample so that the classification
loss remains close to zero. This zero loss tricks the model
into believing there is “nothing” to learn from these exam-
ple(s) [11]. Explicitly, given a data input x with label y, the
defender can generate error-minimizing noise δ by solving
the following bi-level optimization problem:
argmin

θ
Ex,y[min

δ
L(f(x+ δ), y)] s.t. ∥δ∥p ≤ ϵ, (1)

where f denotes the model, L is the cross-entropy loss,
and the noise magnitude is bounded by ∥δ∥p. However,
unlike classification models, generative models operate in
a fundamentally distinct manner, making it challenging to
directly utilize this approach for generating UEs.

Comparison of Noise-based Attacks/Defenses. Table 1
shows a comparison of various methods (attacks or defenses)
in AI that rely on noise injection into data. Adversarial
attacks [21], [22], [23] aim to maximize AI models’ pre-
diction errors by injecting error-maximizing noise during
the testing phase. Adversarial training [24], [25] seeks to
enhance model robustness by integrating adversarial exam-
ples into the training phase, which can be formulated as a
min-max optimization problem. Data poisoning attacks [26]
degrade the model’s performance by tampering with its
training data. Backdoor attacks [27], [28], as a special case
of poisoning attacks, embed stealthy triggers in the training
data, misleading the model to incorrectly respond to data
containing trigger patterns. Research [29] has also shown
that the use of error-maximizing noise for data poisoning is
highly effective. However, applying error-maximizing noise
to training samples will not stop the model from learn-
ing. Conversely, unlearnable examples take an opposite ap-
proach, i.e., injecting error-minimizing noises through a min-
min optimization process, to trick the model into believing
that nothing can be learned from these examples, effectively
rendering the data unexploitable.

2.2. Representation of Music Signals
Polyphonic music data, i.e., the Musical Instrument Dig-

ital Interface (MIDI) format [30], has long been a cor-
nerstone in music composition and editing. Unlike tradi-
tional audio files, MIDI does not contain actual sound but
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Figure 1: Illustration of frequency masking in psychoacous-
tic modeling (log-scaled x-axis: 20 Hz — 16 kHz).

rather provides detailed instructions on how music should be
played, specifying notes, their lengths, and intensity. Today,
most composers use digital audio workstations (DAWs)
(e.g., Ableton Live, Logic Pro, and FL Studio), which heav-
ily rely on MIDI for composing and arranging music [31].
On the other side, some recent music generative models,
such as Google’s MuLan [32] and MusicLM [20] illustrate
the trend towards using audio data directly, rather than
MIDI. The move towards using direct audio formats allows
for a more nuanced and high-fidelity generation of music,
capturing the subtleties of timbre and expression that MIDI
might not fully replicate. In light of these developments,
HARMONYCLOAK needs to accommodate both MIDI
and raw audio formats, such as .wav and .mp3, to address
the evolving landscape of music generation.

The MIDI format can be visualized as a matrix akin to
a musical scoresheet, with values ranging from 0 to 1 (i.e.,
note velocity), where each element represents the presence
or absence of notes at different time steps. To be precise,
a multi-track piano-roll for M instrumental tracks within a
single bar can be represented as a tensor x ∈ [0, 1]R×S×M ,
with R denoting the number of time steps in a bar and
S indicating the number of available note candidates. The
raw audio waveform format, which can be either converted
from the MIDI files using DAWs or recorded from physical
instruments, can be represented as x ∈ [−1, 1]N , where N
is the number of samples.

2.3. Particular Aspects of Music
While there has been active research on audio machine

learning attacks relying on imperceptible noise injection
(e.g., [33], [34], [35], [36]), they primarily target the ma-
nipulation of speech data to deceive speech recognition or
speaker identification systems. These methods employ either
the Lp norm or psychoacoustic hiding approaches [37], [38]
to constrain the added noise, ensuring it remains impercep-
tible to listeners. However, these approaches might not be
directly applied to music data as it encompass a broader
range of frequencies, more complex harmonic structures
with multiple instrumental tracks, and dynamic variations
in tempo and volume that are not present in speech.

Moreover, music often involves multiple instruments
and voices simultaneously, adding layers of complexity to

its acoustic and perceptual properties. A recent study [39]
proposes a human-in-the-loop attack to create adversarial
music to evade copyright detection. However, this method
requires considerable human-involved attacking effort and
may vary in effectiveness due to the complexity of music
perception and the diverse ways in which individuals experi-
ence and interpret music [40], [41]. Additionally, none of the
existing research has considered the music production pro-
cess, where musicians often convert their compositions into
specific formats (e.g., MP3) for distribution. This conversion
typically includes lossy compression, potentially affecting
the efficacy of the introduced noises. Therefore, ensuring
the perceptual quality of music when injecting noise
demands a more nuanced and low-effort approach that
accounts for both the complex nature of compositions
and the music production process.

2.4. Psychoacoustic Modeling

Psychoacoustic models [42] have revealed that sounds
falling below certain psychoacoustic hearing thresholds, i.e.,
the absolute hearing threshold, become imperceptible to
humans. This hearing threshold, as shown in Figure 1, can
be calculated for any frequency (ν) as:

TH(ν) = 3.64×
( ν

1000

)−0.8

− 6.5× e−0.6×( ν
1000

−3.3)2 . (2)

Moreover, the physical apparatus in the ear used to detect
sound can be overwhelmed by the louder sound, raising the
hearing threshold for other sounds at nearby frequencies,
a phenomenon referred to as “frequency masking” [43].
When measuring frequency masking curves, researchers
discovered a critical bandwidth around the masker fre-
quency where the masking threshold remains flat rather
than dropping off. In Figure 1, we can observe that the
critical bandwidth forms a bell curve in which the hearing
threshold is elevated in the presence of a loud masker tone.
Despite having a higher level than the hearing threshold,
tones falling within this curve will be masked out by the
masker. Additionally, masking can occur even when the
masker and maskee sounds are not played simultaneously,
a phenomenon known as “temporal masking” [43]. Louder
sounds can obscure quieter ones immediately before (pre-
masking) or after (post-masking) their occurrence, further
highlighting the temporal dynamics of auditory perception.
MP3 Lossy Compression. Leveraging insights from psy-
choacoustic models, audio compression technologies like
MP3 [44] can strike an optimal balance between audio qual-
ity and file size, making them ideal for music distribution.
Specifically, MP3 compression leverages frequency masking
by calculating the masking-to-noise ratio (MNR), enabling
the encoder to allocate fewer bits for masked regions and
effectively compress the audio to a smaller file size. Given
that composers may choose MP3 compression for music dis-
tribution due to its wide compatibility and compactness, it is
important to make sure that any defensive noises introduced
by HARMONYCLOAK are robust enough to withstand this
lossy compression process.



TABLE 2: Target music generative AI models.

Model Year Backbone Type of Music #Params
MuseGAN [18] 2018 GAN Multi-track MIDI 720k

SymphonyNet [19] 2022 Transformer Multi-track MIDI 30M
MusicLM [20] 2023 Transformer Audio Waveform 1B

2.5. Deep Music Generation

While early attempts at music generation mainly use the
recurrent neural network (RNN) based architectures [45],
[46], [47], more recent advancements in deep music gen-
eration, since 2017, have leveraged more powerful deep
generative models, such as Generative Adversarial Networks
(GAN) and Transformers. For instance, MidiNet [48] and
MuseGAN [18] utilize CNN-based GAN architectures for
music generation. SeqGAN [49] employs an RNN-based
GAN framework, where the generative model is modeled
as a stochastic policy in reinforcement learning. Recently,
due to the exceptional effectiveness of Transformer models
in natural language processing (NLP) and computer vision,
numerous Transformer-based approaches have been intro-
duced for music generation [19], [20], [50], [51], [52], each
utilizing unique encoding strategies to capture the complex-
ities of musical information. MusicBERT [52], for instance,
employs the OctupleMIDI encoding, which allows for a
more granular representation of MIDI events, while Sym-
phonyNet [19] leverages the Multi-track, Multi-instrument
Repeatable (MMR) encoding to efficiently represent orches-
tral music’s complexity and diversity.

In recent advancements within the field of music gen-
eration, several foundation models (e.g., [20], [53]) have
emerged as significant contributors. MusicLM [20] repre-
sents a pioneering leap as the first large foundation model
capable of generating high-fidelity music based on textual
descriptions. This model showcases the ability to under-
stand and translate complex textual prompts into musical
compositions, utilizing a hierarchical sequence-to-sequence
framework. MusicLM utilizes three key models, including
SoundStream [54] for acoustic tokens and w2v-BERT [55]
for semantic tokens, along with MuLan [32] for conditioning
during training and inference. It has two stages: a semantic
modeling stage that learns to map MuLan audio tokens to
corresponding semantic tokens, and an acoustic modeling
stage that predicts acoustic tokens based on the previously
generated tokens and the input text. On the other hand,
MusicGen [53], employs an auto-regressive Transformer
model that operates over an EnCodec tokenizer [56], with
codebooks sampled at 50 Hz, offering a streamlined ap-
proach to music generation.

In this paper, we demonstrate our framework’s gener-
alizability using MuseGAN, SymphonyNet, and MusicLM,
each with distinct structures detailed in Table 2.

3. Threat Model & UEs for Gen. AI
3.1. Threat Model

In the context of generative AI in the music domain,
the potential threats are the risks of copyright infringements
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Figure 2: Illustration of the threat model where the attacker
scrapes music posted online by victim musicians to train
their music generative models.

posed to musicians and the authenticity of their work. To
alleviate these concerns, musicians or music composers (i.e.,
defenders) can employ HARMONYCLOAK to protect their
music against unauthorized exploitation by generative AI
models, as shown in Figure 2.
Attacker’s Capabilities. The attacker (e.g. AI companies or
model owners) might scrape music data from the Internet or
music streaming platforms to train their music-generative AI
models, potentially leading to copyright infringements and
harming musicians. We assume the attacker possesses sub-
stantial advantages and capabilities, including unrestricted
access to the training dataset and model parameters, facili-
tating comprehensive data and gradient inspections, and the
ability to perform adaptive attack strategies (e.g., filter or
data-augmentation-based), aiming to learn from unlearnable
music that is being protected, in response to any perceived
degradation in the generative model’s performance.
Defender’s Objectives. The primary goal of the defender
(e.g., music composer) is to render their composed music
unlearnable, presenting a significant challenge to generative
models attempting to replicate the intricate patterns and
structures within the music faithfully. Concurrently, they aim
to ensure that these UEs closely resemble the original music
and remain indistinguishable for human listeners.
Defender’s Capabilities. We assume that the defender has
access to a local computing resource (e.g., a laptop) so
that he or she can apply defensive imperceptible noises
to their music locally before its online distribution. The
defender may convert their unlearnable compositions into
lossy compression formats (e.g., MP3) for distribution. We
also assume that the defender has full access to the portion
of composed music that they want to make unlearnable.
However, they cannot access the complete training music
dataset, limiting their abilities solely to their portion of the
data. In this paper, we consider both white-box and black-
box settings. Notably, in a white-box setting, the defender
has comprehensive knowledge of the generative model used
to train on the music data, enabling them to leverage it
in generating unlearnable music examples. However, the



defender cannot interfere with the actual training process
itself. In a black-box setting, the defender operates with no
knowledge of the generative model used for training or the
ability to use the generative model to generate music.

3.2. UEs for Generative AI

Unlike creating unlearnable examples (UEs) for classifi-
cation models, as discussed in Section 2.1, generative mod-
els, such as Transformers and GANs, function differently.
This distinction necessitates tailored approaches to produce
UEs for each type of generative model, due to their unique
mechanisms.
Unlearnable Examples for Autoregressive Models. In au-
toregressive models like Transformers, the objective during
training is to minimize the negative log-likelihood (NLL) of
the target sequence given the predicted (or partially gener-
ated) sequence. Autoregressive models are the core of many
recent music generation models, such as MusicLM [20] and
SymphoyNet [19]. To reduce the amount of information that
can be extracted by the models, we minimize the model’s
loss by introducing perturbation δ to mislead the model
into anticipating a flawless sequence continuation. For a
sequence of variables X1:N we achieve this by optimizing
the following min-min objective function:

min
θ

min
δ

− log

T∏
t=1

f(xt|xt−1 + δt−1, ...., xt−p + δt−p : θ),

(3)
where xt represents the predicted value in the sequence at a
time t. xt−1, ...xt−p are the previous values in the sequence
and p is the autoregressive order. After optimizing for the
optimal noise, when we utilize the unlearnable data (i.e.,
x+δ) to train the autoregressive model, we observe that the
model is not generalizing on those samples due to added
noise losing the learning capability.
Unlearnable Examples for GAN-based Generative Mod-
els. Generative models, such as generative adversarial net-
works (GANs) [57] (i.e., the core of MuseGAN [18]) are
fundamentally different from autoregressive models. They
aim to capture the statistical properties of the training data
and generate new samples that resemble the training dis-
tribution. A GAN has two main components: the generator
network (G) and the discriminator network (D). The gen-
erator aims to minimize the loss by creating more realistic
data, while the discriminator aims to maximize the loss by
becoming better at distinguishing real from fake data.

To prevent the generator from extracting the inherent
features from a specific training sample x, we can minimize
the generator loss by adding an imperceptible noise δ onto
the sample to discourage the discriminator from accurately
classifying the sample, halting the generator’s learning pro-
cess. This can be achieved through:

min
G

max
D

[
(min

δ
E(x+δ)[logD(x+ δ)] + Ez[log(1−D(G(z)))]

]
,

(4)
where x represents a real data sample, and z represents
the random noise input to the generator. After determining

the optimal noise, when utilizing the unlearnable data (i.e.,
x + δ) to train the GAN, we would observe that the GAN
loss reaches a minimum value during the initial training
rounds, effectively suppressing the informative knowledge
of the data to be learned by the generator.

4. HARMONYCLOAK

4.1. Methodologies

Design Rationale. As we discussed in Sections 2.3 and 2.4,
the defensive noises applied by HARMONYCLOAK must be
meticulously crafted to minimize perceptual quality impact
while maintaining effectiveness throughout music produc-
tion and distribution. Specifically, we focus on the following
key aspects to tailor the objective functions in Section 3.2
for creating unlearnable music examples:
1 Concealing Noises within Music via Frequency Masking:

To minimize the perceptual impact of the defensive noise on
the music, the noise should be subtle and within the critical
bandwidth of the masking music tunes, which requires its
frequencies to be closely aligned with the musical notes.
2 Dynamic Variations and Temporal Masking: Considering

the dynamic changes in tempo and volume within the music,
the defensive noise must adapt over time and be positioned
close to the masking music tunes for effective temporal
masking, particularly when they cannot be played together.
3 Track-Specific Noise Tailoring: It is essential to create

defensive noises tailored to each instrumental track, taking
into account their distinct tempo, frequency range, and tim-
bre, for effective concealment within the complex structure
of the music.
4 Remaining Effectiveness under Lossy Compression: To

ensure the effectiveness of defensive noise against lossy
compression, it is crucial that the noise not only surpasses
the absolute hearing threshold but also aligns with the dom-
inant musical notes (higher masking sound pressure levels,
thus achieving a lower MNR), which helps in retaining more
noise despite compression.
Constrained Optimization Problem. To generate the im-
perceptible defensive noise that satisfies all aforementioned
requirements, we can employ constrained optimization to
solve for the optimal noise. Specifically, given one bar2 of a
multi-track training music sample x = [x1, x2, . . . , xM ] (M
tracks), we aim to perturb imperceptible defensive noises
crafted for each individual track δ = [δ1, δ2, . . . , δM ] onto
the sample to make it an unlearnable example, i.e., x + δ,
for the generative model. This can be achieved by solving
the following bi-level optimization problem:

min
θ

E
[
min
δ

Lgen

(
f(x+ δ)

)]
+ α

M∑
m=1

wm∥δm∥2, (5)

s.t. H(TH) ≤ δm ≤ xm, ∀m ∈ {1, 2, . . . ,M} (5a)

2. Note that bars are the basic compositional unit in most music gen-
erative models [18], [19], which typically generate music one bar after
another. Thus, we consider a bar of the music audio as the basic unit to
describe how to generate unlearnable examples.
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(b) Defensive Noise

0 1 2 3 4 5 6 7 8 9 10
Time(s)

0
64

128
256
512

1024
2048
4096
8192

Fr
eq

ue
nc

y 
(H

z)

(c) Unlearnable Music

Figure 3: Illustration of the spectrogram of the music and the added defensive noise.

where f(·) denotes the generative model used to train on
the music data, Lgen(·) is the generative loss of the model3,
TH is the absolute human hearing threshold (Equation 2),
α is a scaling coefficient, and wm is defined as one minus
the ratio of the cumulative note velocity for track m to the
total cumulative note velocity across all tracks. We use wm

to balance the noise intensity added to each instrumental
track. H(·) denotes the function that can be used to convert
the threshold in dB SPL to the note velocity as per the
guidelines provided in the DLS LEVEL 1 standard [58]:

H(TH(ν)) = 127 · 10(
1
4 ·log10(TH(ν)))−LU+94, (6)

where LU is the magnitude of the linear transfer function
normalized at 1kHz.

As shown in Equation 5, the inner minimization aims
to find the noise that minimizes the overall generative loss
on unlearnable music, while the outer minimization problem
seeks the model parameters θ (the generator, if the model
is GAN-based) that minimize the generative model loss.
The objective function’s regularizer term aims to minimize
the overall amplitude of the added noise by reducing the
L2 norm of the noise (for 1 ). Additionally, the constraint
(Equation 5a) ensures that the noise remains within the
masked region by constraining the level between the music
(for 1 ) and the absolute hearing threshold (for 4 ). The
bi-level optimization problem is tackled using appropriate
algorithms suited for each task. Specifically, we use Pro-
jected Gradient Descent (PGD) [59], a first-order optimiza-
tion method, to solve the constrained inner minimization
problem. For the outer minimization, we apply Stochastic
Gradient Descent (SGD) [60] with momentum.
Window-based Strategy to Tackle Temporal Dynamics.
To align the noise closely with the dominant musical notes
(for 4 ) while also adhering to the temporal requirement
( 2 ), we divide the music bar (x) into short non-overlapped
windows during optimization, each window lw in length.
Within each window (xt, as the tth window), we identify the
frequency νmt of the dominant musical note for every track
(track m), based on their cumulative musical note velocities,
and set the defensive noise δmt for the window t and track m
to the same frequency νmt as that of the dominant musical
note. It is important to note that if the cumulative musical

3. Lgen(·) serves as a generic loss function and requires updates to align
with the specific type of the generative model (Section 3.2).

note velocities fall below a certain threshold, indicating the
absence of a dominant musical note, then no noise will be
introduced. Since the noise is introduced uniquely for each
instrumental track, this strategy also facilitates the creation
of defensive noises customized for each track (for 3 ).

To ensure that the constraint (Equation 5a) can be effec-
tively applied in these windows, we employ a sigmoid()-
based function to keep the noise δmt within the following
range for all windows t and tracks m:

H(TH(vmt )) ≤ δmt ≤ M(xm
t ), ∀t,m, (7)

where νmt is the dominant frequency, and M(·) is the
velocity of the dominant musical note in the music xm

t .
Through this constrained optimization and window-

based strategy, we can successfully generate imperceptible
defensive noise that satisfies all four aforementioned design
criteria. Figure 3(a)(c) provides a spectrogram comparison,
demonstrating that the clean music and its corresponding
unlearnable version are remarkably similar and virtually
indistinguishable. Further evidence from Figure 3(b) shows
that the defensive noise not only closely aligns with the
dominant musical notes but also possesses a much lower
intensity compared to the original music, reinforcing our
methodology’s effectiveness in preserving the original audi-
tory experience.

4.2. HARMONYCLOAK in Black-Box Setting

In the black-box setting, the defender has neither knowl-
edge about the specific generative model used to train on the
music data nor access to use the model to generate music.
To make our error-minimizing noise applicable to arbitrary
generative models regardless of their model type and archi-
tecture, we need to improve its cross-model transferability.

Meta-learning [61] is a strategy for tackling new tasks
by learning to learn. In this approach, a model first learns
knowledge and finds connections among multiple training
tasks (meta-training phase) and then adapts to the unseen
task with a few examples through fine-tuning (meta-testing
phase). Inspired by the meta-learning technique, we propose
to use a two-step iterative method, as shown in Figure 4, to
generate defensive noise to protect music from being learned
by unseen and unqueriable generative models. Specifically,
we randomly sample S1, ..., SQ from a bag of randomly
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Figure 4: HARMONYCLOAK in black-box settings.

initialized surrogate models S and perform the following
meta-training and meta-testing to compute defensive noise.
Meta-training. After segmenting the music into windows
and initializing the defensive noise δmt for the window t
and track m, we utilize the first Q-1 models from the
bag to simulate a white-box scenario, thereby generating
unlearnable music. Consequently, the bi-level optimization,
represented by Equation 5, transforms into the following
formulation:

min
θ

E
[
min
δ

(Q−1∑
q=1

Lq
gen(f(x+ δ}

)]
+ α

M∑
m=1

wm∥δm∥2,(8)

s.t. H(TH) ≤ δm ≤ xm, ∀m ∈ {1, 2, . . . ,M} (8a)
where q is the surrogate model in the bag (q ∈ S). As
we have multiple gradients from the selected models, we
take the average of the gradients by dividing it by the
total number of models to ensure balanced optimization and
stability, accurately scaling each model’s contribution across
both meta-training and meta-testing phases:

∇xLgen(f(x+ δ)) =
1

Q

Q−1∑
q=1

Lq
gen(f(x+ δ)). (9)

Meta-testing. After the meta-training phase, we transition to
meta-testing to refine the noise for adaptation to the unseen
model. During this stage, we fine-tune the defensive noise
for the last sampled model SQ in a black-box setting to
bolster its generalizability. In this black-box setting, where
direct access to the model’s loss function is unavailable,
we utilize divergence loss as a surrogate metric. Divergence
loss quantifies the disparity between the distribution of the
target model’s output and the distribution of the clean music,
providing a measure of how effectively the perturbation min-
imizes the learning. Following this, the process for crafting
defensive noise aligns with the optimization objectives out-
lined in Section 4.1. This involves iteratively adjusting the
perturbation to minimize the model’s loss while maintaining
imperceptibility to human perception. Through this iterative
optimization process, guided by the divergence loss in the
black-box setting, we refine the defensive noise to maximize
its effectiveness across a variety of unseen models, thus
enhancing its generalizability and robustness.

4.3. HARMONYCLOAK for Wave Audio

Our methodologies introduced in Sections 4.1 and 4.2
primarily employ the MIDI audio format to create unlearn-
able examples. However, many recent music-generative AI
models (e.g., MusicLM [20] and MusicGen [53]) operate
on wave-based audio formats, such as .wav, where different
instrumental tracks are amalgamated to produce music. Our
approach is adeptly adaptable to these wave-based formats
without altering the core objective function, which remains
consistent as outlined in Equations 5 and 8, respective to
the defense scenario at hand.

In adapting our method for wave-based formats, we
use the same window-based strategy to divide music into
smaller windows, each with 10ms length, and then apply
the Short Time Fourier Transform (STFT) to ascertain the
dominant frequencies (νt) within each window (window t).
The absolute hearing threshold at these dominant frequen-
cies (TH(νt)), presented in dB SPL, can be calculated by
Equation 2. We can then compute the magnitude, M(νt), of
the music at each dominant frequency using the Fast Fourier
Transform and calculate the relative dB SPL [44] using:

Mt = −20 · log
(
M(νt)

20−6

)
. (10)

To ensure the defensive noise aligns closely with the dom-
inant musical notes, noise δt is introduced at the dominant
frequency within each window. The magnitude of this noise
is maintained within the following range to meet our afore-
mentioned design criteria for all windows t:

TH(νt) ≤ δt ≤ Mt, ∀t. (11)
It is important to note that when using multi-track wave-

based audio for training generative models (e.g., Musi-
cLM [20] supports both single-track and multi-track wave-
based training music), the aforementioned operations are ap-
plied to each track individually. The subsequent process for
creating defensive noise follows the optimization objectives
introduced in Sections 4.1 and 4.2. This modification tackles
the variety of formats for presenting musical notes, high-
lighting the adaptability of HARMONYCLOAK across both
MIDI and wave-based audio formats without compromising
on the process’ integrity.

5. Evaluation

5.1. Experimental Setup

Evaluation Metrics. To assess the performance of HAR-
MONYCLOAK, we analyze it from two key perspectives:
(1) Effectiveness: Effectiveness is measured by both training
loss and the perceptual quality of the music produced by
generative models when trained using unlearnable examples,
showing the impact of HARMONYCLOAK on the model’s
ability to generate high-quality music; and (2) Perceptual
Quality: The generated music UEs should have an enjoyable
listening experience for the audience, and the introduced
defensive noises should remain a minimal impact on the
music perceptual quality.



To evaluate the quality of both the unlearnable music ex-
amples and the AI-generated music, we adopt the following
intra-track and inter-track metrics that are commonly used
in the field of music by prior studies [18], [20]:

• Empty Bars (EB) Ratio: It calculates the percentage of
empty bars in the generated music, meaning the percent-
age of the silent part of the music compared to the whole
music.

• Used Pitch Classes (UPC) Per Bar: It measures the
number of unique pitch classes utilized within each bar of
the generated music. It ranges from 0 to 12, representing
the 12 pitch classes in music. The UPC metric helps assess
the diversity and variety of pitches employed in music.

• Qualified Notes (QN) Ratio: It quantifies the percentage
of qualified notes in the generated music. A qualified note
refers to a note with a duration of at least three-time
steps. The QN ratio provides insights into the level of
fragmentation or coherence in the music.

• Drum Pattern (DP): It focuses on drum tracks and
measures the ratio of notes that conform to standard 8- or
16-beat patterns. The DP metric indicates the adherence
to established rhythmic patterns in the generated drum
tracks.

• Tonal Distance (TD): TD [62] quantifies the tonal dis-
tance between a pair of tracks. A larger TD value implies
weaker inter-track harmonic relations. This metric helps
assess the level of harmonicity or dissonance between
different tracks in the generated music. It ranges from
0 − 5, where the lower bound of 0 represents maximum
inter-track harmonic relations and the upper bound of 5
represents weaker inter-track harmonic relations or max-
imum tonal dissimilarity.

• Fréchet Audio Distance (FAD): FAD [63] compares
statistics computed on a set of reconstructed music clips
to background statistics computed on a large set of studio-
recorded music. This is a reference-free audio quality
metric, which correlates well with human perception.
Music with a low FAD score is more plausible to the
human ear.

TD and FAD are used to measure perceptual quality as
they focus on the overall quality and perceptual fidelity by
measuring the harmonic relations and statistical character-
istics. EB, UPC, QN, and DP are used to compare the real
music samples with the generated samples in the temporal
domain, providing insights into the generators’ performance
(i.e., effectiveness). When the distributions of real music
samples and generated samples are similar, it follows that
the temporal domain metrics should also exhibit proximity.
Experimental Settings. In this work, we evaluate HAR-
MONYCLOAK on three state-of-the-art music generative
models, i.e., MuseGAN [18], SymphonyNet [19], and Musi-
cLM [20]. We use Lakh MIDI Dataset [64], which contains
45,129 MIDI files featuring music from up to seven different
instruments and spanning a wide range of genres, to train
the generative models and generate unlearnable examples.
By default, unless specified otherwise, we deliberately in-
troduce noise to only 15% of the complete training dataset
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Figure 5: The training generative loss curves of HARMONY-
CLOAK.

to demonstrate the practicality of our approach. Unless
mentioned otherwise, we set the window size lw to 10ms for
all the models. The 10ms window length balances temporal
resolution with stability, as significant tune changes are rare
in such a short period. Minor variations are managed by
focusing on the dominant frequency, keeping noise aligned
with key musical features. How the window size affects the
performance is discussed in Section 5.2.5.

For the optimization tasks, we use a step size of 0.001
for PGD, running it for 20 iterations, while for SGD, we
choose a momentum of 0.9 and an initial learning rate of
0.025. For MusicLM, as it works on waveform-based music
we convert the Lakh MIDI dataset to WAV format (16kHz,
16-bit PCM, Mono) for training. In each setting, we generate
5,000 bars of music using each model for evaluation. For
MuseGAN and MusicLM, we use Adam [65] optimizer
with a learning rate of 10−4, for SymphonyNet, we use
AdamW [65] optimizer with a learning rate of 3×10−4. For
MuseGAN, we use 0.22 for α, and for SymphonyNet and
MusicLM, we use 0.30. In the black-box setting, we use a
total of 10 randomly initialized MuseGAN models, featuring
diverse architectures and varying numbers of parameters for
the generator and discriminator. In each round of training,
we randomly select 7 models from the bag for the defensive
noise calculation.



TABLE 3: Intra-track performance evaluation of HARMONYCLOAK against generative models.

Training Model Empty Bars (EB;%) Used Pitch Classes (UPC) Qualified Notes (QN;%) Drum Pattern
Music B D G P S B G P S B G P S (DP; %)

Training Data - 8.95 8.19 20.2 23.2 11.5 1.92 4.78 4.37 4.77 87.2 83.2 82.5 87.6 89.6

Clean
Music

MuseGAN 6.59 2.33 18.3 22.6 6.10 1.53 3.69 4.13 4.09 71.5 56.6 62.2 63.1 93.2
SymphonyNet 7.29 8.32 19.7 22.2 10.6 1.59 4.75 4.13 4.22 81.9 72.0 71.1 81.5 88.0

MusicLM 8.22 7.93 20.5 22.5 11.1 1.89 4.66 4.84 4.39 86.4 80.5 80.6 85.2 88.1
Unlearnable

Music
(white-box)

MuseGAN 0.01 0.05 0.02 0.02 0.02 11.8 11.3 11.1 11.3 64.2 63.7 67.3 55.2 61.9
SymphonyNet 0.01 0.01 0.01 0.02 0.07 10.9 9.2 11.6 9.2 51.2 55.6 54.7 58.2 66.1

MusicLM 4.39 4.22 5.5 7.2 2.19 7.6 7.5 6.4 8.9 66.9 71.6 69.2 67.4 74.4
Unlearnable

Music
(black-box)

MuseGAN 0.01 2.75 1.09 0.02 0.02 10.9 10.2 9.7 10.7 62.2 63.4 64.2 60.3 77.2
SymphonyNet 0.05 2.21 1.23 0.09 0.16 10.2 10.1 10.7 10.5 55.1 92.3 93.3 97.2 72.3

MusicLM 1.22 4.19 2.45 1.10 0.89 8.22 8.12 8.67 8.81 67.2 66.4 64.2 61.4 77.1

TABLE 4: Harmonicity comparison of generated music (B:
Bass, G: Guitar, P: Piano, S: Strings).

Training Model Tonal Distance (TD)
Music B-G B-S B-P G-S G-P S-P

Clean
Music

MuseGAN 1.66 1.71 1.63 1.42 1.44 1.35
SymphonyNet 1.06 1.13 1.26 1.22 1.12 1.03

MusicLM 1.27 1.38 1.34 1.15 1.32 1.41
Unlearnable

Music
(white-box)

MuseGAN 3.53 2.94 3.02 3.10 3.02 4.04
SymphonyNet 2.82 3.72 4.94 4.42 4.39 4.13

MusicLM 2.17 2.28 2.53 2.75 2.62 2.61
Unlearnable

Music
(black-box)

MuseGAN 3.62 3.24 3.53 3.19 3.23 4.14
SymphonyNet 3.12 3.93 4.72 4.18 4.22 4.23

MusicLM 3.01 2.95 3.62 3.18 3.11 3.93

5.2. Results

5.2.1. Effectiveness. Effectiveness is evaluated through the
following aspects:
Training Loss Comparision. To demonstrate the effec-
tiveness of the generated defensive noise, we examine the
training loss curves for both clean and unlearnable music
examples in white-box and black-box settings. Unlearnable
examples can cause the model’s generative loss to approach
zero, misleading the model into thinking there is nothing
further to learn. As shown in Figure 5, we find that, for
three target models, the training loss on unlearnable music
examples quickly approaches zero after a few iterations
in both white-box and black-box settings. When compared
to MuseGAN and SymphonyNet, unlearnable examples on
MusicLM show a relatively higher loss. This discrepancy is
attributed to MusicLM’s two-step audio processing which
makes it harder to minimize the loss with constrained
noise. Overall, HARMONYCLOAK’s effectiveness is evident
in both white-box and black-box settings, as observed by the
training loss on unlearnable music examples maintaining a
value close to zero across both scenarios.
Temporal Analysis. In our temporal analysis of the gen-
erated music, as presented in Table 3, we conducted a
comprehensive analysis of various aspects of the gener-
ated music to assess its quality and performance. Notably,
models trained on unlearnable music exhibit a significantly
lower percentage of EB compared to models trained on
clean music and even the training data, indicating a lack
of rhythm and structure in the generated music. Moreover,
higher UPC values in the models trained with unlearnable

TABLE 5: Performance of HARMONYCLOAK in preserving
music quality.

Music
Tonal Distance (TD) Avg.

FAD
ScoreB-G B-S B-P G-S G-P S-P

Clean Music 1.57 1.58 1.51 1.10 1.02 1.04 1.23
Unlearnable Music

(white-box) 1.65 1.66 1.69 1.11 1.09 1.09 1.31

Unlearnable Music
(black-box) 1.69 1.69 1.71 1.13 1.10 1.11 1.35

music indicate the utilization of nearly all pitch classes in
each instrument, making the music sound implausible to
human listeners. Additionally, the percentage of QN differs
between models trained on unlearnable music and clean
music, implying that the generated notes are either shorter or
longer compared to clean musical notes, further contributing
to the perceived lack of musicality in generated music.
Lastly, in terms of DP, the generated music performs poorly,
implying that the model struggles to generate convincing
and coherent drum patterns. This deficiency in generating
realistic drum patterns can significantly impact the overall
quality and authenticity of the music. From the results,
it’s evident that MusicLM slightly outperforms MuseGAN
and SymphonyNet. Despite aiming to prevent unauthorized
exploitation of music data, our results suggest that even a
small portion of unlearnable examples in the training data
can hinder learning.
Perceptual Analysis. Table 4 presents a comparison of the
TD distances between the models when trained with clean
and unlearnable music, respectively for both scenarios. The
table shows that all three models exhibit lower TD values
when trained with clean music, implying a more substan-
tial inter-track harmonic relation, which indicates better-
sounding music. However, all the models show significantly
higher TD values when trained with unlearnable music
irrespective of the training scenario, implying weaker inter-
track harmonic relation signifying less harmonic music.

5.2.2. Perceptual Quality. In Table 5, we compare the
Tonal Distance (TD) between the clean and unlearnable
music in both white-box and black-box settings. We observe
a slight increase in TD value among different tracks, indi-
cating weaker harmonic relationships. However, these minor
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Figure 6: Comparison of the generated defensive noise
before and after MP3 compression.

changes are unlikely to significantly impact the overall
quality of the original music [62]. One key observation is
that the unlearnable music generated in the black-box setting
has a higher TD than the white-box, attributed to the lack
of direct knowledge about the target model. Considering
that the original music is intended for a wide audience,
we evaluate its quality using metrics that closely align
with human perception. We report the FAD score based on
the VGGish [66] audio embedding model, which has been
trained on the YouTube-8M audio event dataset [67]. The
FAD score indicates that the unlearnable and clean music
exhibit similar plausibility, affirming the introduced noise’s
limited perceptual impact.

5.2.3. Resilience against Lossy Compression. To demon-
strate that the defensive noises introduced by HARMONY-
CLOAK are robust against lossy compression process, we
compare the defensive noise generated by HARMONY-
CLOAK with the noises produced under L∞-norm and L2-
norm constraints on the target model MuseGAN rather than
our psychoacoustic modeling based approach, before and af-
ter MP3 compression. As shown in Figure 6, we find that the
noises generated under Lp-norm constraints overwhelm the
original music’s pitches and harmonics, masking them al-
most entirely. However, when MP3 compression is applied,
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Figure 7: Comparison of unlearnability of generated defen-
sive noise before and after MP3 compression.

this noise is mostly eliminated. The MP3’s low-resolution
encoding for masked noise effectively eliminates the noise,
leaving the original music relatively unscratched. From the
training loss in Figure 7, we can also observe that, after com-
pression, the model trained on this Lp-norm based unlearn-
able examples exhibits significantly higher training loss,
implying the model can effectively learn from these samples.
Differently, HARMONYCLOAK generates noise that harmo-
nizes with the music frequencies and falls within the masked
region, making them less perceptible. Our technique aims
to minimize the Masking-to-Noise Ratio (MNR) to ensure
that, even after compression, the noise maintains its core
characteristics, preserving the samples’ unlearnability.

5.2.4. Unlearnability Analysis on Genre Classification.
We further conduct genre unlearnability evaluation, in which
we generate unlearnable examples only for the Rock (R)
music in our dataset, and keep other genres like Pop (P),
Classical (Cl), Country (Co), and Jazz (J) intact. Subse-
quently, we train a music genre classifier using the clean
dataset and employ it to predict the genre of music gen-
erated by our generative models. This evaluation helps us
assess whether the models can replicate patterns of perturbed
rock music. For MuseGAN, we adopt a track-conditional
setting, similar to the method outlined by [18]. Specifically,
we provide piano tracks as conditions and generate the
remaining four tracks. During the evaluation phase, we feed
piano tracks from various genres of music into the model
and assess the generated music using the genre classifier.
SymphonyNet, designed to complete partial music pieces,
takes a different approach. We provide SymphonyNet with
a 300ms snippet of music from different genres and obtain
the complete music pieces for evaluation. For MusicLM, we
provide a brief description of the music genre to generate
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Figure 8: Genre unlearnability analysis.

music. In Figure 8, the confusion matrix of the genre
classifier reveals that the classifier struggles to confidently
label rock music as “Rock” in both white-box and black-
box settings. Compared to the classification performance
of the model trained with clean samples, we also observe
that the presence of unlearnable examples in the training
set has a limited impact on its performance across other
genres. Additionally, SymphonyNet demonstrates slightly
higher confidence compared to MuseGAN, mainly because
some of the generated music aligns with the given genre
conditions. MusicLM exhibits the highest confidence among
all three because it includes pre-trained components that
are not part of the unlearnable music generation process.
These results indicate that the generative models have only
acquired limited knowledge from the perturbed rock genre
in the unlearnable examples, especially when trained on the
unlearnable music generated using our method. However,
this does not hinder the model’s ability to learn other genres,
as it may still generate common features of the protected
genre that overlap with those of other genres.

5.2.5. Impact of Window Size. In the design of HAR-
MONYCLOAK, we use a window-based strategy to address
temporal dynamics. Determining the optimal window size
is crucial, as it ensures sufficient noise is added to the
music to render it unlearnable while aligning the noise with
the dominant frequency of the music for effective masking.
To identify the appropriate window size, we conducted an
ablation study on MuseGAN in the white-box setting with
varying window sizes. Figure 9 presents the unlearnability
analysis of the generated music for different window sizes,
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Figure 9: Impact of different window sizes on the unlearn-
ability.

TABLE 6: Impact of different window sizes on the percep-
tual quality and running time.

Window
Length

Avg. FAD Avg. FAD
(Generated Music) (Unlearnable Music)

5ms 11.3 1.3105
10ms 10.9 1.3179
20ms 8.7 1.2818
50ms 6.8 1.2798
100ms 4.2 1.2522

showing the loss curves for each. The figure clearly indicates
that shorter window sizes result in steeper loss curves, which
more effectively compress the knowledge that can be learned
during training. Table 6 supports this finding, showing that
shorter window sizes lead to much higher FAD scores of the
generated music, indicating low music quality. However, the
impact of window size on the FAD scores of unlearnable
music is minimal. Therefore, even with increased noise
levels associated with shorter window sizes, the quality of
unlearnable music remains relatively consistent with that
of clean music. Consequently, we chose a 10ms window
size, as it achieves a balance by maintaining a noise level
similar to smaller windows while ensuring the FAD score
remains high enough to prevent the generative model from
effectively learning from the music.

5.2.6. Impact of Unlearnable Percentages. Unlearnable
music effectively tricks the generative model into perceiving
those samples as devoid of useful information. However,
this raises a question: do these unlearnable samples affect
the learning process for other clean samples with similar
features, such as music from the same genre? To investigate
this, we conducted an experiment where varying percentages
of rock music were rendered unlearnable, and then we
trained the MuseGAN model using a partially unlearnable
(Du) and partially clean (Dc) rock music set combined
with clean music set of other genres. Figure 10 presents
the confusion matrix for the genre classifier’s inference on
the music, which shows that the presence of unlearnable
music does not hinder the generative model’s ability to learn
from the clean samples. However, the classification accuracy
for the “Rock” category greatly declines when 80% of the
examples are unlearnable, primarily because the remaining



TABLE 7: Impact of unlearnable percentages on the generated music. Percentage of unlearnable examples is Du

Du+Dc
.

Percentage of Empty Bars (EB;%) Used Pitch Classes (UPC) Qualified Notes (QN;%) Drum Pattern
Unlearnable Music B D G P S B G P S B G P S (DP; %)

Clean Training Music 8.95 8.19 20.2 23.2 11.5 1.92 4.78 4.37 4.77 87.2 83.2 82.5 87.6 89.6
0% 6.59 2.33 18.3 22.6 6.10 1.53 3.69 4.13 4.09 71.5 56.6 62.2 63.1 93.2
5% 5.97 2.44 18.4 21.3 6.01 1.58 3.71 4.33 5.03 70.2 63.7 61.3 59.2 88.9

10% 3.27 1.75 7.89 0.16.3 3.62 4.34 5.23 6.73 8.71 65.1 61.9 64.2 60.1 78.5
15% 0.01 0.05 0.02 0.02 0.02 11.8 11.3 11.1 11.3 64.2 63.7 67.3 55.2 61.9
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Figure 10: Impact of unlearnable percentages on genre
classification. Percentage of unlearnable examples is Du

Du+Dc

for rock genre.

20% clean rock music examples do not provide enough
data for the model to perform effectively. We observe a
similar trend when different percentages of other types of
music are rendered unlearnable. For example, making 80%
of pop music unlearnable reduces the classifier’s accuracy to
57.8% compared to 75.1% when only 20% is unlearnable.
Similarly, the accuracy drops to 65.7% for jazz, 59% for
country, and 47% for classical music.

Additionally, we conducted a study using MuseGAN
with different percentages of randomly chosen unlearnable
music in the training set (Du+Dc) to test how it hampers the
overall learning of the generative model. Table 7 shows that
as the proportion of unlearnable examples in the training
data increases, there is a corresponding decrease in the
model’s performance compared to the clean training data, as
measured by EB, UPC, QN, and DP, on the generated music.
In contrast to classification models, which primarily focus
on distinguishing between categories, generative models
strive to capture the underlying data distribution. They learn
patterns, structures, and relationships within the training data
to produce new, similar outputs. Therefore, a reduction in
the proportion of learnable music samples compromises the
model’s capacity to generate plausible music.

6. Subjective User Study

We conducted a listening test4 with a diverse group of
31 participants (21 males, 10 females) aged between 25 and
36. All participants in the test were self-identified music
lovers. Throughout the test, each subject was presented with
four sets of music clips in a randomized order to minimize

4. The experiments and interviews were formally classified as exempt
by our university’s IRB.

TABLE 8: Performance of HARMONYCLOAK (H: Harmo-
nious, P: Plausibility, N: Noisy, OR: Overall Rating) in user
study.

Settings Music Model Avg. User Rating
H↑ P↑ N↑ OR↑

Clean Training Music - 4.17 4.81 4.19 4.45
Generated Music

(Trained on
Clean Music)

MuseGAN 4.11 4.05 4.44 4.17
SymphonyNet 4.44 4.53 4.20 4.11

MusicLM 4.55 4.49 4.29 4.31

White-
box

Unlearnable Training Music - 4.11 4.72 4.01 4.32
Generated Music

(Trained on
Unlearnable Music)

MuseGAN 2.34 3.10 1.20 2.40
SymphonyNet 2.20 2.94 2.25 2.22

MusicLM 3.22 3.10 2.29 2.31

Black-
box

Unlearnable Training Music - 4.03 4.45 3.98 4.12
Generated Music

(Trained on
Unlearnable Music)

MuseGAN 2.44 3.78 1.94 2.88
SymphonyNet 2.20 2.94 2.45 2.22

MusicLM 3.41 3.04 2.78 2.34

potential bias. Each music clip has a minimum duration
of 30 seconds. The first set contains two versions of the
training music: the original clean version and its correspond-
ing unlearnable version, which was generated using both
white-box and black-box settings. The other sets featured
four music samples: two from the target model (MuseGAN,
SymphonyNet, and MusicLM) trained on clean music and
two from the target model trained on unlearnable music.
Each subject was asked to rate the music in terms of whether
the music 1) has pleasant harmony (H↑); 2) plausibility (P↑);
3) presence of noise (N↑); and 4) the overall rating (OR↑)
on a 5-point Likert scale. Sample audio clips can be found
on the anonymized website [68].

Table 8 provides an overview of the ratings obtained
from the user study. The results indicate that the clean and
the unlearnable training samples generated using white-box
settings received similar ratings from the users. For example,
the H scores for these samples are 4.17 and 4.11, respec-
tively, while the OR scores are 4.45 and 4.32, respectively.
Additionally, unlearnable music samples generated in black-
box settings received slightly lower ratings, indicating a
minor drop in music quality due to a lack of knowledge
about the target generative model. However, their H, P, and
OR scores are still above 4. User ratings for models trained
on unlearnable music, such as MuseGAN, SymphonyNet,
and MusicLM, received significantly lower scores compared
to those trained on clean music, with OR scores as low as
2.22, 2.31, and 2.40 in white-box settings. These findings
underscore the substantial impact of unlearnable music on
the generated music’s quality and perception.



TABLE 9: Robustness of HARMONYCLOAK against existing noise removal techniques.

Music Defense
Method

Empty Bars (EB;%) Used Pitch Classes (UPC) Qualified Notes (QN;%) Drum Pattern
B D G P S B G P S B G P S (DP;%)

Clean Music - 8.95 8.19 20.2 23.2 11.5 1.92 4.78 4.37 4.77 87.2 83.2 82.5 87.6 89.6

Generated
Music on

Unlearnable
Music

- 0.01 0.05 0.02 0.02 0.02 11.8 11.3 11.1 11.3 64.2 63.7 67.3 55.2 61.9
SS [69] 1.30 4.15 2.05 0.55 0.80 11.0 8.70 11.2 10.4 69.5 68.8 71.5 62.7 74.0

NMF [70] 0.82 4.05 2.25 0.95 1.08 11.0 10.3 11.1 10.2 68.8 68.7 71.2 61.5 67.1
EPIc [71] 0.60 3.20 1.58 0.06 0.05 11.1 9.30 10.3 10.4 67.5 67.6 68.4 61.2 63.5

DP-InstaHide [72] 1.28 4.15 2.05 0.50 0.80 11.0 8.70 11.1 10.3 69.5 68.8 71.5 62.7 74.1

7. Robustness of HARMONYCLOAK

In HARMONYCLOAK, incorporating imperceptible noise
plays a vital role in making the music unlearnable for
generative AI models. To show the robustness of our gen-
erated unlearnable music examples against existing noise
reduction algorithms and defensive strategies against data
poisoning attacks, we evaluate HARMONYCLOAK under
two prominent noise reduction techniques, i.e., Spectral Sub-
traction (SS) [69], and Non-negative Matrix Factorization
(NMF) [70] and two state-of-the-art defenses EPIc [71] and
DP-InstaHide [72]. SS focuses on estimating and subtracting
noise spectrum from the observed signal. NMF is a matrix
decomposition technique widely used for audio source sep-
aration and noise reduction. By decomposing the observed
signal into its constituent parts, NMF can isolate the noise
components and reconstruct a cleaner version of the original
signal. EPIc detects and eliminates poisoned data while DP-
InstaHide augments the data to eliminate poisoning.

Table 9 presents the EB, UPC, QN, and DP values
of the music samples generated by the model trained on
unlearnable examples and the samples filtered by these
noise-removal techniques, respectively. The findings suggest
that despite the adoption of these prominent noise removal
techniques and adaptive defenses, the generative model still
struggles to produce high-quality music. For instance, the
inter-track and intra-track values of music samples generated
by the model trained on filtered unlearnable examples still
significantly differ from clean music. For instance, the Bass
track has an EB score of 0.82 when applying the NMF
filter, whereas the clean music scores 8.95. While using
EPIc, the EB percentage for the Guitar track in the generated
music increases from 0.02 to 1.58, and the model trained
on clean music achieves a much higher score of 20.2. These
disparities strongly suggest that the generated music remains
implausible despite undergoing specific filtering techniques
or adaptive defense mechanisms. This observation highlights
the resilience of HARMONYCLOAK against various noise
removal techniques, as the generated samples consistently
lack plausibility.

8. Related Work

Generative AI in Music. The history of machine-generated
music dates back to the 1950s with works like the ILLIAC
Suite by Hiller [73]. The first AI-based music models with
neural networks emerged in the late 1980s by Nierhaus [74].

In recent years with the rise of generative models, mu-
sic generation become a topic of interest for researchers.
Roberts et al. proposed MuseVAE [75], which uses a hierar-
chical decoder for variational autoencoder (VAE) models to
address the challenges of modeling the long-term structure
in sequential data like musical nodes. Dhariwal et al. [76]
proposed Jukebox, which utilizes a multiscale VQ-VAE
to compress long-context raw audio and employs Autore-
gressive Transformers to generate high-fidelity songs with
music. MuseGAN [18] was the first multi-track generative
model, where three Generative Adversarial Networks (GAN)
are used to address the unique challenges of generating mu-
sic, including temporal dynamics, interdependence between
tracks, and the ordering of musical notes. More recently,
SymphonyNet [19] proposed by Liu et al., is a permutation
invariant language model for symphonic music generation,
utilizing a modified Byte Pair Encoding algorithm.

Additionally, in the domain of music generation condi-
tioned on text, Mubert [77] employs a Transformer to embed
text prompts and select music tags that closely match the en-
coded prompt to query a song generation API. On the other
hand, Riffusion [78] fine-tunes a Stable Diffusion model on
mel spectrograms of music pieces from a music-text dataset,
offering a distinct approach to generating music based on
textual input. Most recently, Agostinelli et al. proposed
MusicLM [20], a high-fidelity music generation model that
leverages autoregressive modeling and text conditioning.
They achieve this by projecting music and text descriptions
into a shared embedding space, enabling training on audio-
only data and conditioning on text during inference.
Unauthorized Data Usage Prevention in AI. There has
been active research to prevent unauthorized use of data.
Fowl et al. conducted studies showcasing the efficacy of
adversarial examples in data poisoning, surpassing previous
poisoning methods concerning secure dataset release [29].
The exploration of indiscriminate poisoning attacks, intro-
duced by Yu et al. [79], has emerged as a preventive
strategy against unauthorized data exploitation. Their re-
search focuses on the examination of the linear separability
of sophisticated attack perturbations when associated with
target labels. To prevent third-party training on data with-
out permission, Shan et al. proposed a privacy protection
method that leverages targeted adversarial attacks to add
imperceptible perturbations to users’ data, rendering mod-
els trained on the perturbed dataset invalid and protecting
privacy against unauthorized deep learning models [10].

More recently, Huang et al. [11] and Fu et al. [12] pro-



posed unlearnable strategies using error-minimizing noise,
reducing the error of training examples to make them un-
learnable. Liu et al. [80] improved the robustness of unlearn-
able examples by leveraging data’s grayscale knowledge.
Furthermore, Ren et al. [13] used Classwise Separability
Discriminant (CSD) to enhance the transferability of un-
learnable examples across different training settings and
datasets. Zhao et al. [81] proposed unlearnable examples
for diffusion models using the error-minimizing noise strate-
gies. Zhang et al. [82] proposed label-agnostic unlearnable
examples with cluster-wise perturbations. Liu et al. intro-
duced stable unlearnable examples by training the defensive
noise against random perturbation instead of the adversarial
perturbation to improve the stability of defensive noise [83].
Similar to unlearnable examples, Ye et al. proposed ungener-
alizable examples [84], which are trained by maximizing a
designated distance loss in common feature space with the
addition of undistillation optimization.

In addition to unlearnable examples, other research
has explored various protective techniques. For example,
Chen et al. have developed EditShield [85], a method
that introduces distortions to protect against unauthorized
image editing by misleading instruction-guided diffusion
models. Similarly, Liu et al.’s MetaCloak [86] uses meta-
learning to generate robust, transformation-resistant pertur-
bations aimed at protecting personal data from misuse in
text-to-image synthesis. Furthermore, Shan et al. proposed
Glaze [17], a method designed to protect artists from style
mimicry by text-to-image diffusion models. This is achieved
by introducing perturbations that maximize the feature dif-
ferences from the original image. Additionally, Shan et
al. introduced Nightshade [87], a prompt-specific poisoning
attack for diffusion-based text-to-image models capable of
causing related concept destabilization. Lastly, emphasizing
the unique application in speech data, Yu et al. proposed An-
tiFake [88], an adversarial audio system designed to thwart
unauthorized speech synthesis, safeguarding the integrity of
audio content from exploitative AI technologies.

Although the aforementioned studies make valuable con-
tributions to prevent unauthorized data usage, they primar-
ily concentrate on vulnerabilities in deep learning models
related to image classifications or image style mimicry with
some efforts in the speech domain. There is a notable gap
in research regarding generative AI models, particularly in
their application to creating music artworks.

9. Discussion and Future Work

Expanding to Vocal-Instrumental Compositions. Our
current implementation of HARMONYCLOAK primarily ad-
dresses instrumental music, which, while complex, does
not fully encompass the challenges posed by vocal per-
formances. Vocals bring additional layers of complexity
due to intricate harmonic structures, varying timbres, and
dynamic temporal characteristics. These nuances may not
be fully addressed by the current approach, which focuses
on instrumental soundscapes. Future research will extend
HARMONYCLOAK to handle vocal-instrumental composi-

tions, applying imperceptible noise to both types of audio
elements. This work will explore how defensive techniques
can protect vocals without distorting their tonal qualities,
ensuring that artists’ expressive voices, both literal and
metaphorical, remain safeguarded from AI-driven content
generation while retaining the artistic quality of the music.

Involving Professional Musicians for Deeper Insights.
Our feedback collection so far has been limited to general
music enthusiasts, whose appreciation and understanding of
music may lack the depth and critical insights offered by
professional musicians. As a result, certain subtleties and
practical concerns that are crucial to real-world adoption
may have been overlooked. For future studies, we will
actively involve professional musicians across various gen-
res and roles—composers, producers, and performers—to
provide nuanced, expert feedback. This collaboration will
allow us to better understand industry-specific needs and
fine-tune HARMONYCLOAK to ensure it aligns with the
rigorous standards of the music industry. By integrating their
expertise, we aim to make HARMONYCLOAK more robust,
practical, and suitable for professional use, ensuring both
aesthetic and technical integrity are preserved in music while
protecting against unauthorized AI exploitation.

Broadening Testing to Multiple Compression For-
mats and Platforms. While HARMONYCLOAK has proven
effective against MP3 compression, the real-world use of
digital music involves a broader range of compression for-
mats, especially as used by major streaming platforms such
as YouTube, Spotify, and SoundCloud. These platforms
employ proprietary algorithms and different bitrate settings
that could interact unpredictably with the defensive noise
applied by HARMONYCLOAK. To ensure the method’s reli-
ability across various listening environments, we will expand
testing to cover a wider range of compression formats and
streaming technologies. The goal is to enhance HARMONY-
CLOAK ’s robustness across all major digital platforms,
ensuring that protective measures remain effective regardless
of how the music is distributed.

Ensuring Long-Term Effectiveness Against Evolving
AI Technologies. One of the key challenges for HARMONY-
CLOAK is maintaining its long-term effectiveness in the face
of rapidly evolving AI models. Current techniques for cloak-
ing music from generative AI may become less effective
as new AI advancements and attack strategies emerge. To
address this, future work will focus on strengthening the
robustness of perturbation-based unlearnable examples in
music. Drawing on lessons from the image domain, where
new attacks have succeeded in bypassing similar defenses
(e.g. [89], [90]), we will explore these challenges in the
music domain and continuously adapt our methods. This
will ensure sustained protection of musicians’ rights and
creative works against unauthorized exploitation by increas-
ingly sophisticated AI technologies.

10. Conclusion

In this paper, we addressed the growing concerns re-
garding the unauthorized exploitation of musicians’ music



by generative AI models. We propose a defensive frame-
work, HARMONYCLOAK, that leverages imperceptible noise
to safeguard music from generative AI models. By intro-
ducing noise that disrupts key musical characteristics, we
force the generative network to deviate from the training
music, thus minimizing the risk of knowledge transfer.
Our extensive experiments and evaluations demonstrate the
effectiveness of HARMONYCLOAK in both white-box and
black-box settings, highlighting its robustness and practi-
cality. Furthermore, through this research, we contribute
valuable insights and guidance on data unlearnability for
generative models, extending its applicability beyond music
protection.
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distance: A reference-free metric for evaluating music enhancement
algorithms.,” in INTERSPEECH, pp. 2350–2354, 2019.

[64] C. Raffel, Learning-based methods for comparing sequences, with
applications to audio-to-midi alignment and matching. 331 Ph. D.
PhD thesis, thesis, Columbia University, 2016.

[65] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[66] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, et al.,
“Cnn architectures for large-scale audio classification,” in 2017 ieee
international conference on acoustics, speech and signal processing
(icassp), pp. 131–135, IEEE, 2017.

[67] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,
B. Varadarajan, and S. Vijayanarasimhan, “Youtube-8m: A large-scale
video classification benchmark,” arXiv preprint arXiv:1609.08675,
2016.

[68] “Harmonycloak project website.” https://mosis.eecs.utk.edu/
harmonycloak.html, 2024.

[69] R. Martin, “Spectral subtraction based on minimum statistics,” power,
vol. 6, no. 8, pp. 1182–1185, 1994.

[70] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–
791, 1999.

[71] Y. Yang, T. Y. Liu, and B. Mirzasoleiman, “Not all poisons are
created equal: Robust training against data poisoning,” in International
Conference on Machine Learning, pp. 25154–25165, PMLR, 2022.

https://mosis.eecs.utk.edu/harmonycloak.html
https://mosis.eecs.utk.edu/harmonycloak.html


[72] E. Borgnia, J. Geiping, V. Cherepanova, L. Fowl, A. Gupta, A. Ghiasi,
F. Huang, M. Goldblum, and T. Goldstein, “Dp-instahide: Provably
defusing poisoning and backdoor attacks with differentially private
data augmentations,” arXiv preprint arXiv:2103.02079, 2021.

[73] L. A. Hiller Jr and L. M. Isaacson, “Musical composition with a high-
speed digital computer,” Journal of the Audio Engineering Society,
vol. 6, no. 3, pp. 154–160, 1958.

[74] G. Nierhaus, Algorithmic composition: paradigms of automated
music generation. Springer Science & Business Media, 2009.

[75] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck, “A
hierarchical latent vector model for learning long-term structure in
music,” in International conference on machine learning, pp. 4364–
4373, PMLR, 2018.

[76] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and
I. Sutskever, “Jukebox: A generative model for music,” arXiv preprint
arXiv:2005.00341, 2020.

[77] “Mubert-inc..” https://github.com/MubertAI/Mubert-Text-to-Music,
2022, 20222.

[78] S. Forsgren and H. Martiros, “Riffusion - Stable diffusion for real-
time music generation,” 2022.

[79] D. Yu, H. Zhang, W. Chen, J. Yin, and T.-Y. Liu, “Indiscriminate
poisoning attacks are shortcuts,” 2021.

[80] Z. Liu, Z. Zhao, A. Kolmus, T. Berns, T. van Laarhoven, T. Heskes,
and M. Larson, “Going grayscale: The road to understanding and
improving unlearnable examples,” arXiv preprint arXiv:2111.13244,
2021.

[81] Z. Zhao, J. Duan, X. Hu, K. Xu, C. Wang, R. Zhang, Z. Du,
Q. Guo, and Y. Chen, “Unlearnable examples for diffusion mod-
els: Protect data from unauthorized exploitation,” arXiv preprint
arXiv:2306.01902, 2023.

[82] J. Zhang, X. Ma, Q. Yi, J. Sang, Y.-G. Jiang, Y. Wang, and C. Xu,
“Unlearnable clusters: Towards label-agnostic unlearnable examples,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3984–3993, 2023.

[83] Y. Liu, K. Xu, X. Chen, and L. Sun, “Stable unlearnable exam-
ple: Enhancing the robustness of unlearnable examples via stable
error-minimizing noise,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, pp. 3783–3791, 2024.

[84] J. Ye and X. Wang, “Ungeneralizable examples,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11944–11953, 2024.

[85] R. Chen, H. Jin, J. Chen, and L. Sun, “Editshield: Protecting unau-
thorized image editing by instruction-guided diffusion models,” arXiv
preprint arXiv:2311.12066, 2023.

[86] Y. Liu, C. Fan, Y. Dai, X. Chen, P. Zhou, and L. Sun, “Meta-
cloak: Preventing unauthorized subject-driven text-to-image diffusion-
based synthesis via meta-learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24219–
24228, 2024.

[87] S. Shan, W. Ding, J. Passananti, S. Wu, H. Zheng, and B. Y. Zhao,
“Nightshade: Prompt-specific poisoning attacks on text-to-image gen-
erative models,” in 2024 IEEE Symposium on Security and Privacy
(SP), pp. 212–212, IEEE Computer Society, 2024.

[88] Z. Yu, S. Zhai, and N. Zhang, “Antifake: Using adversarial audio
to prevent unauthorized speech synthesis,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications
Security, pp. 460–474, 2023.

[89] P. Sandoval-Segura, V. Singla, J. Geiping, M. Goldblum, and T. Gold-
stein, “What can we learn from unlearnable datasets?,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[90] T. Qin, X. Gao, J. Zhao, K. Ye, and C.-Z. Xu, “Learning the
unlearnable: Adversarial augmentations suppress unlearnable example
attacks,” arXiv preprint arXiv:2303.15127, 2023.

TABLE 10: Comparison of the quality of generated music
between HARMONYCLOAK and random Gaussian noise.

Training Noise Budget FAD
Clean Music - 1.53

Random Gaussian
Noise

0.1 1.59
0.2 4.9
0.3 9.4

Unlearnable Music - 11.3

Appendix A.
Appendix

A.1. Additional Experimental Settings

For MuseGAN, we employ both the composer model,
which generates music from scratch, and the conditional
model, which allows for a track-conditional generation. The
composer model enables us to explore the generation of
music without any specific conditioning input. In contrast,
the conditional model inputs piano tracks and generates the
remaining four tracks. Regarding SymphonyNet, we config-
ure the model with an embedding size of 512 for event to-
kens, durations, instruments, and 3-D positional embedding.
The event token vocabulary was derived using the Music
BPE algorithm [19], resulting in a final vocabulary size
of 1,000. The vocabulary sizes for durations, instruments,
and 3-D positional embeddings were determined based on
the dataset’s characteristics. In SymphonyNet, the linear
transformer decoder consists of 12 self-attention layers, each
comprising 16 attention heads. For MusicLM, as it works
on waveform-based music and our method is specialized in
MIDI format, we add an extra layer of midi-wav conversion
on each round of the training. We use pre-trained Sound-
Stream [54] and w2v-BERT [55] for extracting acoustic and
semantic tokens while training MuLan [32]. For generating
unlearnable music, we use the MuLan loss as the generative
loss.

A.2. Comparison with Random Gaussian Noise
To understand the true potential of HARMONYCLOAK,

we set out to assess the quality of generated music when
trained on music samples perturbed by varying levels of
random Gaussian noise. The results, presented in Table 10,
exhibit the average FAD scores of the generated music
across different noise budgets. In this context, the term
“noise budget” refers to the ratio of added Gaussian noise’s
power to that of the original music signal.

When we introduce minimal Gaussian noise (noise bud-
get is set to 0.1), we find that the quality of the generated
music (FAD score) remains comparable to the clean mu-
sic, showcasing the generative models’ resilience to subtle
training data noise. However, as the noise budget of random
Gaussian noise increases, we observe a notable decrease in
the perceptual quality of the training samples, reflected by
a corresponding rise in the FAD score for the generated
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Figure 11: The training generative loss curves of HAR-
MONYCLOAK.

music. In contrast, when the model is trained on the unlearn-
able music generated by HARMONYCLOAK, the generated
music exhibits a significantly higher FAD score, reaching
11.3. This demonstrates that our approach offers greater
unlearnability compared to music examples perturbed by
random noise, even when the noise budget is increased to
0.3. Notably, the noise introduced by HARMONYCLOAK re-
mains imperceptible, thus HARMONYCLOAK achieves this
unlearnability without compromising the listening experi-
ence of the training music sample.

A.3. Model Fine-tuning with Unlearnable Music
Our results, presented in the main paper, are based on

training generative AI models from scratch using a mixed
dataset containing both clean and unlearnable music tracks.
However, it is also possible for generative AI models to be
pre-trained on millions of music samples. These pre-trained
models can then be fine-tuned with new music to generate
similar styles. To evaluate the effectiveness of our method
in this context, we conducted experiments generating un-
learnable music in the white-box setting using a pre-trained
MusicLM model. We then fine-tuned the model on these
unlearnable tracks. Our findings revealed that generating
unlearnable music for the pre-trained MusicLM model intro-
duced a higher level of noise and posed greater challenges in
cloaking features the model had previously learned. In Fig-
ure 11, we compare the performance of HARMONYCLOAK
when fine-tuning the pre-trained model to its performance
when training a model from scratch. Importantly, we found
that generating unlearnable music for pre-trained MusicLM
models, to achieve results comparable to the scratch-trained
model required 53% more iterations (inner optimization in
Equation 5).

TABLE 12: Time cost analysis of generating unlearnable
music.

Method Time for Fixed Length Sample (sec)
white-box black-box

Random Gaussian Noise 0.0034 0.0037
L2 norm 7.1 13.2
L∞ 7.3 13.1

HARMONYCLOAK 12.5 25.7

A.4. Time Complexity Analysis
We have conducted time cost analysis for generating

various types of defensive noises in both white-box and
black-box settings on four Nvidia A100 GPUs, and the
results are presented in Table 12. We choose a 25 second
instrumental piece for the experiments. We use MuseGAN
as the target model. From the table, we observe that HAR-
MONYCLOAK, while efficient, does take slightly more time
compared to the Lp-norm-based method due to the calcu-
lation of psychoacoustic features. In the white-box setting,
generating an unlearnable music sample requires only 12.5
seconds, while in the black-box setting it takes 25.7 sec-
onds. This demonstrates HARMONYCLOAK’s efficiency and
potential for large-scale deployment, with remarkable speed
that makes it well-suited for handling substantial workloads
and real-world applications.

A.5. Model Transferability Analysis
We also evaluated the transferability of the unlearnable

music generated by HARMONYCLOAK in the white-box
setting. In this context, a distinct model is employed to
generate unlearnable music, differing from the original train-
ing model. To perform this, we produced unlearnable music
with MuseGAN and employed it to train the SymphonyNet
model. We conducted a temporal analysis and the results
of this analysis are presented in Table 11, which illus-
trates the temporal characteristics of the music generated
by SymphonyNet. The results reveal that unlearnable music
exhibits a significantly lower percentage of EB compared to
models trained on clean music and even the original training
data. This observation implies that the generated music lacks
rhythm and structure. Furthermore, the higher values of the
UPC metric in the models trained with unlearnable music
indicate the utilization of nearly all pitch classes in each
instrument. Consequently, the music produced will exhibit
implausible characteristics to human listeners, affirming that
unlearnable music possesses some degree of transferability
among distinct models.

TABLE 11: Intra-track performance evaluation of HARMONYCLOAK trained on transferred unlearnable samples.

Training Empty Bars (EB;%) Used Pitch Classes (UPC) Qualified Notes (QN;%) Drum Pattern
Music B D G P S B G p S B G P S (DP;%)

Clean Music 7.29 8.32 19.7 22.2 10.6 1.59 4.75 4.13 4.22 81.9 72.0 71.1 81.5 88.0
Unlearnable Music 1.09 2.45 1.65 0.96 0.74 11.3 10.1 10.5 10.3 56.3 59.1 68.3 72.2 66.7



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper presents “HarmonyCloak,” a tool designed to
protect the intellectual property of instrumental musicians in
the age of generative AI. By introducing subtle, impercep-
tible changes to audio waveforms, HarmonyCloak prevents
modern generative models from learning meaningful infor-
mation from the music.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Establishes a New Research Direction

B.3. Reasons for Acceptance

1) This paper creates a new tool to enable future science.
The use of subtle perturbations to make music audio
unlearnable is both interesting and new. As one of the
first works in this space, the paper has the potential to
provide a building block and stimulate follow-up works
in this important direction.

2) This paper considers an important and timely issue of
protecting human musicians from unauthorized model
training.

3) The authors tested HarmonyCloak across a wide range
of scenarios, including various rhythmic structures and
instrumentations, different levels of access to genera-
tive models (both white-box and black-box), and ro-
bustness against audio processing techniques such as
compression. These extensive experiments demonstrate
the effectiveness of HarmonyCloak’s protection.
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