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Abstract—User authentication is the critical first step in detecting identity-based attacks and preventing subsequent malicious attacks.
However, the increasingly dynamic mobile environments make it harder to always apply cryptographic-based methods for user
authentication due to their infrastructural and key management overhead. Exploiting non-cryptographic based techniques grounded on
physical layer properties to perform user authentication appears promising. In this work, the use of channel state information (CSl), which
is available from off-the-shelf WiFi devices, to perform fine-grained user authentication is explored. Particularly, a user-authentication
framework that can work with both stationary and mobile users is proposed. When the user is stationary, the proposed framework builds a
user profile for user authentication that is resilient to the presence of a spoofer. The proposed machine learning based
user-authentication techniques can distinguish between two users even when they possess similar signal fingerprints and detect the
existence of a spoofer. When the user is mobile, it is proposed to detect the presence of a spoofer by examining the temporal correlation
of CSI measurements. Both office building and apartment environments show that the proposed framework can filter out signal outliers
and achieve higher authentication accuracy compared with existing approaches using received signal strength (RSS).

Index Terms—User authentication, channel state information, wireless networks

1 INTRODUCTION

HE rapid advancement of wireless technologies has

made wireless networks ubiquitous and thus network
services can be accessed at anytime and anywhere. How-
ever, securing wireless networks is challenging due to the
shared nature of the wireless medium, as adversaries can
eavesdrop upon or intercept any wireless transmission [16].
For example, an adversary can passively monitor wireless
networks to obtain valid device identities and further launch
identity-based attacks, which serves as a basis for launching a
variety of malicious attacks across multiple network layers [6].
Indeed, such identity-based attacks are easy to launch in WiFi
networks, where the Access Points (APs) can be spoofed,
resulting in Denial of Service (i.e., a rogue AP attack) [32].
Although existing cryptographic based authentication techni-
ques (such as WiFi Protected Access and 802.11i) can protect
data frames, an attacker can still spoof the 802.11 manage-
ment frames [23]. In addition, the increasingly dynamic
mobile environments make it harder to utilize cryptographic-
based authentication, due to its infrastructural and key man-
agement overhead [2], [5], [7].
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Recently authentication based on non-cryptographic
methods has been proposed to complement and enhance the
existing cryptography based schemes [3], [6], [10]. For exam-
ple, channel based authentication schemes use the Received
Signal Strength (RSS) of wireless packets or the Channel
Impulse Response (CIR) of a single frequency to generate
fingerprints of the wireless channel to perform user authenti-
cation [6], [22]. The rationale behind these schemes is that
both RSS and CIR present unique spatial properties due to
path loss and multi-path effects. An adversary, situated at a
different location from the legitimate user, will incur differ-
ent RSS or CIR profiles. However, the RSS and CIR extracted
from a single frequency only provide coarse-grained infor-
mation about the wireless channel and thus the effectiveness
of user authentication is largely limited. For example, RSS-
based authentication can hardly distinguish between two
users with similar signal signatures even though they may
be located far away from each other [6].

In this paper, we exploit the fine-grained physical layer
information made available from orthogonal frequency-
division multiplexing (OFDM) to perform user authen-
tication. The channel response from multiple subcarriers
of OFDM provides detailed Channel Sate Information
(CSD [11], which can be used to detect and differentiate
minute changes in the wireless channel [28]. Measuring the
channel frequency response thus is an ideal candidate for
achieving accurate user authentication leveraging temporal
and spatial properties of the wireless channel. Specifically, we
show that CSI can be utilized to accurately authenticate users
with similar signal fingerprints and differentiate a legitimate
user from a spoofing attacker. The detailed channel infor-
mation has the power to enable user authentication at a per
packet level, making it a promising utility to achieve user
authentication at a much higher granularity (in both spatial
and temporal domains) than existing channel-based (i.e., RSS
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and CIR) approaches. Further, CIR can only be obtained on
dedicated hardware (e.g., Universal Software Radio Periph-
erals (USRPs)), which prevents it from being widely adopted
in real-world scenarios. In this work, we conduct user authen-
tication by associating each individual user with his own
wireless device, which is not accessible by other users. Each
wireless device represents a distinct user in the network.
Thus user authentication can be performed by examining the
channel state information of the associated wireless device.

CSITE [14] applies a sliding-window based technique to
CSI measurements to build the user profile for authentica-
tion purposes. CSITE assumes that the CSI collection is
benign (without the presence of an identity-based attacker)
when building the user profile. However, in practice an
identity based attacker could be present at any time. Thus,
the CSI measurements could be a mixture of readings from
both the legitimate user and a spoofer, leading to a mis-
classification of the user profile and falsely authenticating
the spoofer. To tackle such challenges arising in real-world
scenarios, we study how to construct the user profile even
when a spoofer is present and perform robust user authenti-
cation under various adversarial scenarios, e.g., when the
legitimate user is not present but the spoofer is active. In
particular, we propose a user authentication framework
that can work with both stationary and mobile users. For
the stationary scenario, the proposed framework builds the
user profile for user authentication and is resilient to the
presence of the spoofer. It involves two main components:
an Attack-resilient Profile Builder and a Profile Matching
Authenticator. The Attack-resilient Profile Builder has the capa-
bility to accurately construct the user profile of the legiti-
mate user even when a spoofing attacker is present. We
further develop a Profile Matching Authenticator grounded in
machine-learning based techniques to perform robust per-
packet user authentication in real-time based on CSI meas-
urements. In addition, we are among the first to study the
effect of different modulation and coding scheme rates on
CSI to achieve accurate user authentication. For mobile sce-
narios, we propose to detect the presence of a spoofer by
examining the temporal correlation of CSI measurements.
This involves two main components: a Correlation Analyzer
and a Correlation-based Authenticator. The Correlation Ana-
lyzer calculates the temporal correlation between adjacent
CSI measurements within a coherence time period, whereas
the Correlation-based Authenticator authenticates the mobile
user in real-time based on the temporal correlation between
adjacent CSI measurements.

We summarize the main contributions of our work as
follows:

e Weshow that it is feasible to perform user authentica-
tion by utilizing CSI from OFDM even when the users
possess similar signal fingerprints, making fine-
grained user authentication achievable in practice.

e We develop a user authentication framework that
works with both stationary and mobile users. To
deal with a stationary user, the proposed framework
has the capability of building a user profile under
the presence of a spoofing attack and achieves higher
authentication accuracy compared with existing
channel based (e.g., RSS-based) methods. For mobile
users, the framework performs real-time user
authentication by leveraging temporal correlation of
CSI measurements.

e We validate the framework by conducting real
experiments in both office and apartment environ-
ments using off-the-shelf WiFi devices. Experimental
results confirm that our framework is highly robust
and effective in user authentication under various
attacking scenarios without requiring any additional
overhead on wireless devices.

The rest of the paper is organized as follows. In Section 2,
we put our work in the context of related work. The attack
model and our framework are described in Section 3, and
the feasibility of using CSI to perform user authentication is
presented in Section 4. In Section 5, we detail the proposed
Attack-resilient Profile Builder based on clustering analysis.
The Profile Matching Authenticator grounded on machine
learning techniques is described in Section 6. Section 7
depicts the correlation-based user authentication algorithm
for mobile scenarios. We discuss the experimental setup
and methodology, and further present the performance
evaluation results of our proposed CSl-based authentication
framework in both office and apartment environments in
Section 8. Finally, we conclude our work in Section 9.

2 RELATED WORK

The traditional approach to providing user authentication is
to use cryptographic-based authentication. For example, Wu
et al. [30] have introduced a secure and efficient key manage-
ment (SEKM) framework. SEKM builds a Public Key Infra-
structure (PKI) by applying a secret sharing scheme and an
underlying multicast server group. Wool [29] implements a
key management mechanism with periodic key refresh and
host revocation to prevent the compromise of authentication
keys. The application of cryptographic authentication
requires reliable key distribution, management, and mainte-
nance mechanisms, which reduces its usability in a dynamic
mobile wireless environment (i.e., due to a lack of a fixed key
management infrastructure) or resource-constrained wireless
networks (i.e., due to limited resources on wireless devices).

Recently non-cryptographic based authentication has
drawn considerable attention [33]. In general, non-crypto-
graphic solutions can be categorized into four groups: soft-
ware based, hardware based, biometric and physical-trait
based, and channel-signature based. Software based authenti-
cation basically relies on the unique characteristics of the soft-
ware programs or protocols running on the devices [10], [26],
whereas hardware based authentication leverages unique
hardware traits such as channel-invariant radiometric signa-
tures [3], [24] and clock skews [13], [18] to identify users. Bio-
metric and physical-trait based authentication relies on the
behavioral modalities including on-screen touch and finger
movement patterns [9], [20]. Channel-signature based authen-
tication schemes have been proposed to use either Received
Signal Strength [6], [15], [31], [32], [34] or Channel Impulse
Response [22], [27] to identify users. The major advantage
of using channel signatures is that it exploits the naturally
available random and location-distinct characteristics of the
wireless channel, which are very hard to falsify, for user
authentication.

For channel based user authentication using RSS, a series
of approaches [6], [31], [32] have been proposed to detect
identity-based attacks, determine the number of attackers
when multiple adversaries are masquerading as the same
node identity, and localize the adversaries. Reciprocal
Channel Variation-based Identification (RCVI) [34] exploits
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the reciprocity of RSS variance to decide if all packets come
from a single or more than one sender. Ensemble [15] lever-
ages a user’s growing collection of trusted devices that ana-
lyze variations in RSS to determine whether the pairing
devices are in physical proximity to each other. It is impor-
tant to note that although RSS is available on current wire-
less devices, RSS is known to be sensitive to multipath
effects and affected by the transmission power level. As a
result, a legitimate user may be mistakenly regarded as
a malicious user due to the inherent RSS variation. Different
from RSS which is readily available in the existing wireless
infrastructure, CIR is usually extracted from specialized
devices such as Field-Programmable Gate Arrays (FPGAs)
[27] and USRPs [22], which limit its practicality in real-
world scenarios.

Different from the previous work, we propose to use
Channel State Information, fine-grained channel informa-
tion readily available from current commercial hardware
(i.e., 802.11 a/g/n devices), which represents both ampli-
tude and phase for each subcarrier on the 802.11 a/g/n
OFDM system. Exploiting CSI has the potential to achieve
much higher granularity (in both spatial and temporal
dimensions) for user authentication than applying existing
channel based (i.e., RSS and CIR) authentication methods.
The work most related to ours is CSITE [14], which utilizes
CSI magnitude measurements averaged over time to gener-
ate profiles for legitimate users. Jiang et al. [14] assumes the
CSI collected over time is benign and there is no identity-
based spoofing attack present when building the profile.
However, in practice a spoofing attack could be present at
any time. Thus, the profiles built under such attacks may
not represent legitimate users and may lead to false authen-
tication of malicious users. In our work, we develop an
Attack-resilient Profile Builder, which has the ability to
detect the presence of spoofing attacks when building pro-
files for legitimate users. Furthermore, we study the effect
of different modulation and coding scheme rates on CSI to
achieve a higher accuracy of user authentication under both
single antenna and multiple antenna cases.

3 ATTACK MODEL AND SYSTEM OVERVIEW

In this section we first introduce the attack model we con-
sider in this work. We then present the flow of our proposed
CSI-based user-authentication framework.

3.1 Attack Model

User authentication is a technique of confirming the identity
of a user. Based on the user authentication result, a system
can determine whether a user is allowed to access certain
restricted services, such as restricted access of certain web
sites and enterprise data retrieval [25]. User authentication
is particularly challenging in wireless networks as it is very
hard, if not impossible, to physically confirm the truth of a
user’s identity due to the open nature of the wireless
medium. In our user-authentication framework, we focus
on the identity-based attack, in which an adversary can col-
lect a legitimate user’s identity and then masquerade as the
legitimate user to pass the user authentication process [6].
The identity-based attack is very harmful as, once having
passed the user authentication, the adversary can gain cer-
tain access privileges and further launch a variety of mali-
cious attacks. For example, an adversary could easily obtain
the Medium Access Control (MAC) address of a legitimate
WiFi device by passively monitoring the wireless traffic and

then impersonate the legitimate device by changing its
MAC address. Another example is that by masquerading as
an authorized wireless AP or an authorized client, an
attacker could launch a variety of attacks including session
hijacking, denial-of-service (DoS) attacks, or falsely adver-
tising services to wireless clients [32].

In this work, we assume that an identity-based attack can
be present at any time. That is, unlike the previous work,
which only considers the presence of such an attack during
the authentication phase, we take the viewpoint that iden-
tity-based attacks could be present at any time in real-world
scenarios even when building profiles for legitimate users.
Once such an attack is present in the network, the adversary
spoofs the legitimate user’s device identity (e.g., a WiFi
device’s MAC address) to send out packets. Once the
attacker obtains the legitimate user’s device identity, it can
access the network with or without the presence of the legiti-
mate user. Furthermore, the spoofer can be either stationary
or mobile, whereas the legitimate device is mostly placed at
a fixed position but could be moved from one location to
another (e.g., the user walks from an office to a meeting
room). The movement of the device can be detected using
existing techniques [4], [17], [19] (e.g., examining the vari-
ance of the wireless signal). We assume that the attacker
does not have the capability to capture and replay the CSI,
and thus the attacker cannot alter or jam signals transmitted
by the legitimate user.

3.2 System Overview

We consider both stationary and mobile users. The mobility of
a user can be detected by using existing techniques [4], [17],
[19]. For a stationary user, the basic idea is to profile the user
by exploiting the readily available fine-grained CSI extracted
from orthogonal frequency-division multiplexing based wire-
less networks, such as 802.11 a/g/n networks. CSI reveals the
wireless channel response depicting the amplitudes and
phases of every OFDM subcarrier. In general, CSI measure-
ments from each user present a unique pattern corresponding
to the wireless communication channel. Such CSI patterns
can be extracted and utilized to uniquely identify each user. If
the observed wireless packet (from a wireless device) contains
a different CSI pattern from the legitimate profile, the network
will raise an alert indicating a possible identity-based attack
and the user authentication fails on that device. Particularly,
when both a legitimate user and spoofer are present, the pro-
posed system should be able to know which one is the legiti-
mate user given its pre-constructed CSI profile. For mobile
users, we propose to detect the presence of a spoofer by exam-
ining the temporal correlation of CSI measurements. The
adjacent CSI measurements from the same user within a
coherence time show strong correlation, while CSI measure-
ments from different users are uncorrelated due to spatial
and temporal diversities. Such a correlation pattern could be
used to determine whether an identity-based attack exists. In
mobile scenarios, we note that when both a legitimate user
and spoofer are present, the proposed system can detect the
presence of the spoofer but cannot differentiate which CSI
measurements are from the legitimate user.

As noted above, our proposed user authentication frame-
work, depicted in Fig. 1, consists of four components covering
both the stationary and mobile scenarios: Attack-resilient Pro-
file Builder, Profile Matching Authenticator, Temporal Corre-
lation Analyzer and Correlation-based Detector. The first two
components deal with stationary users, and the last two are
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Fig. 1. Overview of the CSl-based user authentication framework.

for mobile users. The network implementing this framework
will keep monitoring the wireless traffic and examining CSI
measurements from each packet based on the device’s
identity.

3.2.1 Components for Stationary User Authentication

Attack-Resilient Profile Builder. The novelty of our profile
builder is that it has the capability of building the actual user
profile under the presence of a spoofer. When building the
user profile for a specific user identity (ID), the presence of
the spoofer will cause the CSI measurements collected from
this ID to contain the mixture signal information from both
the legitimate user and spoofer. As a result, the profile built
under such a scenario is thus undermined by the spoofer,
leading to mistakenly authenticating the spoofer or denying
the legitimate user’s access. We assume that the legitimate
user communicates first in the network to build its CSI pro-
file. Even if the spoofer learns the legitimate user’s ID quickly
and comes online right after the legitimate user communi-
cates, there will be two CSI clusters formed. Next, our profile
builder employing clustering analysis separates the CSI
measurements of the legitimate user from the ones of the
spoofer and determines the presence of the spoofer. Thus,
the CSI profile will not be built in this case, and the legiti-
macy of the user profile construction can thus be ensured.

Furthermore, when the legitimate user moves from a cur-
rent location to another, e.g., from an office to a meeting
room, our framework can adaptively rebuild the user’s pro-
file. This rebuilding procedure can be user triggered or trig-
gered after detecting the user movement based on existing
techniques [4], [17], [19].

Profile Matching Authenticator. This component examines
the real-time CSI measurements per packet from a device
ID and performs user authentication by performing user
profile matching. It is grounded in machine-learning based
techniques and raises an alert if the profile matching fails.
Our authenticator aims to achieve fine-grained user authen-
tication as it can work at a per packet level — authenticating
each packet of the device ID. It is capable of authenticating
different users even when they possess similar signal finger-
prints due to the complex environments arising in real
systems. The authenticator works well under both single-
antenna and multiple-antennas cases.

3.2.2 Components for Mobile User Authentication

Temporal Correlation Analyzer. In this component, we aim to
analyze the correlation of the CSI measurements collected
from the same device ID. Particularly, the Pearson correla-
tion coefficient is used to indicate the correlation between
any two adjacent CSI measurements. Further, we filter out
neighboring CSI measurements that are not within a coher-
ence time period due to various factors (i.e., traffic colli-
sions, varying transmission rates, etc.).

Correlation-Based Detector. Unlike stationary users, mobile
users do not have a fixed CSI profile to match for authentica-
tion. Instead, we examine the correlation between two adja-
cent CSI measurements for user authentication. In particular,
the temporal correlation between adjacent CSI measure-
ments of the same user within a coherence time period
should be very high. However, the correlation should be low
(i.e., uncorrelated) if two adjacent CSI measurements come
from two different users (i.e., in the presence of spoofing
attack) due to spatial diversity of wireless channels. There-
fore, we examine the correlation between any two adjacent
CSI measurements within a particular segment (i.e., time
window) for user authentication. If the correlation of these
adjacent CSI measurements falls below a predefined thresh-
old, the presence of a spoofing attack is declared. This thresh-
old is determined empirically in our experiments.

4 FEeASIBILITY STuDY OF CSI-BASED USER
AUTHENTICATION

In this section, we first provide the background on CSI mea-
sured from OFDM subcarriers. We then discuss the feasibil-
ity of using CSI for user authentication. We next present our
data pre-processing techniques applied to CSI measure-
ments for more reliable user authentication.

4.1 Preliminaries

Our authentication framework exploits the CSI measured
from OFDM subcarriers, a reliable and fine-grained descrip-
tion of channel characteristics. OFDM is widely used in wire-
less communication systems to improve the communication
performance by utilizing the frequency diversity of wireless
channels. For example, OFDM is used in popular wireless
networks including IEEE 802.11a/g/n, WiMAX, 4G and Dig-
ital Subscriber Line (DSL). OFDM is a method of encoding
data streams on multiple carrier frequencies. In particular,
Data in OFDM is split into multiple streams, which are coded
and modulated respectively into different subcarriers. The
frequency of each subcarrier is designed to be orthogonal to
other subcarriers, so that the interference during transmis-
sion is minimized. For example, for the OFDM employed by
the 802.11a/g/n physical layer, a relatively wideband
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Fig. 2. Example of channel state information for OFDM that is collected
at three different positions.

channel (or carrier) with 20 or 40 MHz is partitioned into 54
or 108 subcarriers for data transmission, so that each subcar-
rier can be used as a narrowband channel. This inspires us to
exploit the channel state information extracted from OFDM
subcarriers for user authentication, which can provide a fine
granularity of the channel information and has the potential
to achieve higher accuracy for user authentication in prac-
tice. Fig. 2 depicts the amplitude of typical channel state
information across 30 subcarrier groups at three different
positions. For each position, the CSI of 50 packets is mea-
sured from an Intel WiFi 5,300 card in a laptop.

4.2 Feasibility Study

To be able to use CSI for user authentication, the measured
CSI from different devices should satisfy the unigueness
requirement. That is, the CSI measured at different devices
situated at different locations should be distinct, while the
CSI collected from different packets emitted by the same
device should be similar, if not identical. We observe in Fig. 2
that the amplitude of CSI at different subcarriers is different
due to frequency diversity. Furthermore, the CSI shapes
from these three devices at different locations are distinct.
This is because the CSI is the reflection of the complicated
wireless channel and is affected by the wireless environment
due to reflection, refraction, shadowing, etc. The CSI decorre-
lates with location rapidly. If two users are located at differ-
ent locations, their CSI profiles should differ significantly.
Additionally, we observe that the CSI of multiple packets
from the same device at a fixed location exhibits the same
trend, which indicates that a unique profile could be built for
each user and can serve as the basis for user authentication.

Note that compared to the RSS, which only provides
overall received power for each packet, CSI provides fine-
grained channel information, i.e., channel responses on
multiple subcarriers. Therefore, instead of deploying multi-
ple landmarks or monitors to collect multi-dimensional RSS
readings for user authentication purposes, a single monitor
can provide multi-dimensional channel state information
sufficient for user authentication. Furthermore, since the
widely adopted IEEE 802.11 n standard [1] already defines
a mechanism to exchange detailed CSI between a pair of
wireless devices, employing CSI as a unique means for user
authentication will not involve extra communication cost
for existing WiFi networks.

Temporal Correlation. We conduct experiments to study the
temporal correlation between CSI measurements. The CSI
measurements are simultaneously collected from two mobile
users, u and v/, which move at the normal speed in an indoor
environment. We observe that the adjacent CSI measure-
ments from the same device exhibit high correlation with

Reduced
vatiance

Amplitude (dB)
Amplitude (dB)

0 : ) :
0 1015 20 25 30 %5 10 15 20 25 a0
Subcarriers Subcarriers

(a) (b)

Fig. 3. CSl samples before and after data processing.

each other. As shown in Fig. 4a, generally the correlation
coefficients between two CSI measurements C,(k) and
C,,(K') within a coherence time (e.g., ||k — k|| < 0.025 sec) are
close to 1. On the other hand, the CSI measurements, C,, (k)
and C, (¥) from two different devices, even if the time differ-
ence ||k’ — k|| is less than the coherence time, have correlation
coefficients spanning a large range due to spatial diversity as
shown in Fig. 4b. Based on the above observations, the tem-
poral correlation between two adjacent CSI measurements
can be used to detect a mobile spoofer and thereby authenti-
cate a mobile user.

Data Preprocessing. In our study, we observe that the
mean amplitude value of CSI measurements may shift over
time. We call such a mean value shift as a temporal bias, and
it will result in inaccurate CSI profile construction for user
authentication. Therefore, our framework develops a data
preprocessing strategy to cope with CSI samples to mitigate
the effects caused by such temporal bias.

In particular, we observe a shift in the amplitude of a spe-
cific subcarrier due to the interference presented at either
transmitter or receiver. Fig. 3a plots a typical curve of the CSI
sample in a packet and many curves are collected over time.
It shows that the amplitude of each subcarrier in CSI samples
varies over time. Our data preprocessing strategy adjusts the
mean value of the CSI sample (from a specific packet) to
zero. This helps to reduce the overall variance of CSI meas-
urements across subcarriers before performing user authen-
tication. To illustrate, we denote the raw CSI sample per
packet from a particular user u as a k-dimensional vector C,,,
and the preprocessed CSI sample can be obtained as

1 K
Gu = Cu - 11><K}Z Cu(k)7 (V)
k=1

where K is the number of subcarriers within a single CSI
sample, and 1,k is a K-length all-one vector. After apply-
ing the data preprocessing strategy, the updated CSI sam-
ples will have smaller variance and reduced amplitude bias
on each subcarrier as shown in Fig. 3b. In addition, the wire-
less devices in an 802.11 n network are usually equipped
with multiple-antennas. Thus, the CSI samples collected
from each channel between the transmitting antenna ¢ and
receiving antenna j of two communicating devices will go
through the pre-process as shown in Equation (1), where C,,
will be replaced by C?J.

5 ATTACK-RESILIENT USER PROFILE BUILDER

In this section, we describe the attack-resilient profile builder
which employs clustering analysis on CSI measurements to
determine whether the network environment is benign or a
spoofer is present when constructing the user profile.
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5.1 Basicldea
Since the spoofing attack could be present at any time, we
need to determine whether a spoofer is present when con-
structing a user profile. Our attack-resilient profile builder
aims to ensure the legitimacy of the user profiles even under
a malicious wireless environment. The rationale behind our
attack-resilient profile builder is that the CSI measurements
of each device present unique spatial characteristics: the CSI
has strong spatial correlation with the device’s location.
Although the wireless channel may fluctuate over time, the
CSI of wireless packets from one device at a fixed location
should be clustered together in the multi-dimensional signal
space constructed by CSI measurements. For example, the
30 subcarriers obtained in our experiments can form a 30-
dimensional CSI space, and the amplitudes of the CSI from
multiple packets in Position 1 are clustered together (i.e., has
a constant shape) in CSI space as shown in Fig. 2. Further-
more, the CSI measurements of the wireless packets collected
from another device situated at a different location (Position
2) should form a different cluster in the CSI space. Thus,
when the environment is benign, the CSI measurements from
a particular device should be clustered together and form
one cluster in the CSI space, while under a spoofing attack,
the spoofer utilizes the same device identity as the legitimate
user to transmit packets, and the CSI readings of the device
identity are a mixture of readings from both the legitimate
user and the spoofer, resulting in more than one CSI cluster.
To determine whether the network environment is benign,
our framework applies clustering analysis to partition the CSI
from one device identity into two clusters. Under normal
conditions without spoofing, the distance between the parti-
tioned two CSI clusters should be small since there is basically
only one cluster from a single device at a physical location.
However, under a spoofing attack, there is more than one
device at different physical locations claiming the same
device identity. As a result, more than one CSI cluster will
be formed in the CSI space. Therefore, the distance between
two partitioned clusters will be large as the cluster centers
are derived from the different CSI clusters associated with
different locations in physical space. Therefore, by examining
the distance between the two partitioned CSI clusters, any
presence of the spoofing attack can be determined when
building user profiles. The flow of the Attack-resilient Profile
Builder is shown in Fig. 5. Only when there is no spoofing
attack present, will the profile of the legitimate user be built.

5.2 Algorithm Description

5.2.1 Modulation and Coding Scheme Study

WiFi devices usually use a fixed range of modulation and cod-
ing scheme (MCS) for data transmission. We find in our
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experiments that the modulation and coding scheme occasion-
ally changes to a different one and then switches back due to
the variation of the wireless channel. And the occasionally
changed modulation and coding scheme creates outliers in the
CSI measurements. Thus, our framework first performs out-
lier filtering based on the modulation and coding scheme used
for packet transmission before conducting clustering analysis.
In particular, MCS is a specification of the high-throughput
(HT) physical layer (PHY) parameter in the 802.11 n stan-
dard [1]. It contains the information of the modulation order
(e.g., BPSK, QPSK, 16-QAM, 64-QAM), the forward error
correction (FEC) coding rate, etc. Each 802.11 n packet header
(in the 2.4 GHz band) contains a 16-bit MCS, which can be
extracted together with the CSI sample of each packet.

Fig. 6a shows the raw CSI measurements for a wireless
device with two clusters formed in our experiments. Under
such cases, the MCS rate is changing according to the chan-
nel conditions, and we can observe CSI samples resulting
from different MCS rates. For these cases we find the MCS
values are greater than 263, different from most of the other
test cases in both the lab and apartment environments.
We thus filter out CSI for the packets with MCS values
greater than 263, which corresponds to a single spatial
stream with transmission rate 60 Mbps [1]. After filtering
out these outliers, the CSI coming from the rest of the
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packets exhibits a similar shape (i.e., forms one cluster in the
CSlI space) as shown in Fig. 6b.

5.2.2 Clustering Analysis

We utilize the K-means algorithm to partition the filtered
CSI measurements from the device identity u into two clus-
ters. The K-means algorithm is one of the most popular iter-
ative descent clustering methods [12]. The squared
Euclidean distance is chosen as the dissimilarity measure. If
there are S CSI samples from the device u, the K-means
clustering algorithm partitions S CSI samples into K disjoint
subsets L; containing S sample points so as to minimize
the sum-of-squares criterion

K
Jmm = Z Z ”Cu,s - :L‘Lk||27 (2)

k=1 Cys€Ly

where C, , is a CSI vector representing the CSI value for the
sth packet and py is the geometric centroid of the sample
points for L;, in CSI space. In our cluster analysis, we choose
K = 2. We further choose the distance between two cent-
roids as the test statistic T for identity-based attack detection,

D(’, = ||/’Lk_/’bk’”7 (3)

with k, k' € {1,2}.

Under normal conditions in a benign network environ-
ment, the distance between the centroids from the K-means
cluster analysis in CSI space should be close to each other,
because there is only one cluster from a single device u at a
physical location. However, when a spoofer is present, there
is more than one device situated at different physical loca-
tions, claiming the same device identity. The distance
between two partitioned CSI clusters thus will be large.
Through the analysis above, we show that the clustering
method has the capability of detecting the presence of the
spoofer by applying the threshold t to D, as follows:

D. > t attacker is present; )
D. <t normal condition.

5.2.3 User Profile Building

If the CSI samples are collected in a benign environment, the
framework deposits the pre-processed CSI samples, C,, as
the profile for user u for future profile matching based
authentication. We note that the user profile only requires a
small number of packets, e.g., less than 100 packets.

If the user moves from one location to another (e.g., walks
from an office to a meeting room), the user authentication
framework will adaptively rebuild the user’s profile. The
following are two possible ways to update the user’s profile:
1) the user can actively trigger the profile updating after mov-
ing to a new place; or 2) the profile updating can be triggered
by detecting the user movement using existing techniques.

6 USER AUTHENTICATION LEVERAGING PROFILE
MATCHING
In this section, we present our profile matching authen-

ticator, which uses machine-learning based methods for
packet-level user authentication.

CSl samples
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Profile
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Authentication Authentication
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Fig. 7. Work flow for the profile matching authenticator.

6.1 Basicldea

The basic idea of our profile matching authenticator is to use
machine learning to determine whether the CSI measurement
for the incoming packet with the user identity « matches the
profile constructed by the profile builder. If the incoming CSI
sample matches the user profile, the corresponding packet
can be authenticated successfully as being from user u. Other-
wise, the user authentication fails. Fig. 7 illustrates the work
flow of our profile matching authenticator. In particular, the
profile matching scheme works at the packet level, which
minimizes the latency of the authentication process. In addi-
tion, the packet-level authentication can also be used to moni-
tor and count the number of packets injected by an attacker.

6.2 Approach Description

We next present the profile matching method using the CSI
samples from a single antenna. We then present the profile
matching using CSI samples from multiple antennas to
improve the performance of user authentication.

6.2.1 Profile Matching Using a Single Antenna Pair

We perform the profile matching via the support vector
machine (SVM) technique, which is a computationally effi-
cient way of learning good separating hyperplanes in a high
dimensional feature space. The CSI samples are used as fea-
tures in SVM to perform profile matching for each user. We
first study the case using a single antenna pair for profile
matching.

In this study, we consider the profile matching as a two-
class pattern classification problem. The CSI sample C,, with
user identity u denotes the data to be classified, where
u=1,...,U (with U the total number of legitimate users),
and y denotes its class (y € {—1,1}). We use {(Cy.5, Yu,s), s =
1,...,S} to denote a set of CSI samples associated with the
user identity u. The challenge is how to construct a decision
function f(C,) that correctly classifies the input CSI data,
which could be different from all the constructed profiles.
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If the constructed CSI user profiles are linearly separable,
we can represent them with a linear function in the follow-
ing form:

f(Cu) = U)Tcu + b, (%)

such that f(C,s)>0 for y,,=1 and f(C,s) <0 for
Yu,s = —1, where w and b represent the hyperplane f(C,) =0
separating the two classes.

We seek such a hyperplane that maximizes the separat-
ing margins between the two classes. In particular, this
hyperplane can be found by minimizing the following cost
function:

: 1 z
man('LU, é’) = 5 ||1‘UH2 + F Zgu,sa
s=1

S~t'7 yu,s(qu)(Cu.s) + b) Z 1- é-u,tsa é.u,s Z 07 s = 13 RS Sa

(6)

where @(-) is a nonlinear operator mapping the CSI profile
C, to a higher dimensional space, I' indicates the signifi-
cance of the constraint violations with respect to the dis-
tance between the points and the hyperplane and € is a
slack variable vector.

The mapping between the input CSI samples C,, ¢ and user
profile C, 5 is constructed in the form of a kernel function
Kernel(-,-), such as Kernel(C,C,y) = ®(C, ) P(C, ).
Particularly, we choose a polynomial kernel as the mapping
function and the problem in Equation (6) can be expressed as

S Ly 1(Cyys,C
max Os — o Ay (Yu,sYu,s Kernel(Cys, Cy ) )ty ¢,
a{; 25:1; Vst ( #)) } .

5
st,ag > O,Zasyuﬁ =0,
s=1
where «, are Lagrange multipliers associated with Equa-
tion (7). Thus, the profile matching classifier for input CSI
sample C, ¢ is derived as

S
f(Cyy) = sign ( Z(asy,,,_sKernel(CuyS/, Cus) + b))7 (8

s=1

and the authentication result is determined as

1 success
—1  failure.

f(Cu‘s/) = { ©)

6.2.2 Fusion via Multiple Antennas Pairs

When multiple antennas are available, we can further
improve the performance of the user authentication accu-
racy. For example, we can employ a simple majority voting
process to combine the independent profile matching results
from different antenna pairs. Denoting the input CSI samples
with user identity u between the transmitting antenna ¢ and
receiving antenna j by C}”, all the independent results
from different antenna pairs comprise the voting set
Q={f(C",),1<i<I1,1<j<J}, where I and J are the
numbers of transmitting and receiving antennas respec-
tively. Finally, the authentication result is given by

e (50,

i=1 j=1

(10)

If f(C,y)=1, the authentication successes; otherwise it
fails.
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7 CORRELATION-BASED MOBILE USER
AUTHENTICATION

In this section, we present the proposed correlation-based
method to authenticate mobile users.

7.1 Basicldea

The basic idea to authenticate a mobile user is to examine the
temporal correlation of adjacent CSI measurements from the
user. The rationale behind this is that CSI measurements for
the same user within a coherence time period should be
high, whereas the correlation is low if the CSI measurements
come from different mobile users. We next illustrate the
work flow of the proposed authentication method.

7.2 Algorithm Description

The proposed mobile user authentication algorithm consists
of two major components: a temporal correlation analyzer
and a correlation-based detector. The details of each compo-
nent are explained as follows:

Temporal Correlation Analyzer. In this component, we first
derive the correlation coefficients between any two adjacent
CSI measurements. The work flow of the temporal correla-
tion analyzer is shown in Fig. 8. Before calculating temporal
correlation coefficients, we smooth the CSI measurements
in the frequency domain to mitigate the impact of interfer-
ence and channel noise. Given a particular CSI measure-
ment C,, which is a vector representing the channel
response of 30 carriers, the smoothing operation in the fre-
quency domain is achieved as follows:

1 min(30,f+ L%J )
¢= )
max(0,f— L%J)

1n

where N is the length of the smoothing window in the fre-
quency domain. After smoothing, the random channel noise
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over different subcarrier frequencies would be reduced
from the original CSI measurement C,.

Given the sequence of smoothed CSI measurements
{Cs},0 < s < S, where s indicates the index of CSI measure-
ment and S is the number of CSI measurements, the tempo-
ral correlation coefficient K (s + 1,s) between two adjacent
CSI measurements C,; and C, is defined as follows:

T
K(s+1,5) = —2o1Cs

= e (12)
[Cs1 HICs]l

where the superscript 7' denotes transpose.

Further, for regular wireless traffic, two adjacent CSI
measurements may not be within a coherence period. The
long time interval between two adjacent CSI measurements
could result in the low correlation for a mobile user due to
temporal and spatial diversity. We thus need to filter out
these CSI measurements before performing user authentica-
tion. To facilitate such filtering, the correlation coefficients
defined in Equation (11) is multiplied by a de-correlation
factor 1. Then, the updated temporal correlation coefficient
is defined as

CorrCT
K'(s4+1,s) =225 _xp
[Csra Gl
B 1, 0 < tgy1 —1ts <0.025sec
= Null, o.ww.,

where s indicates the index of the CSI measurement, ¢,
denotes the time stamp of C;, and 7 is the de-correlation fac-
tor indicating whether the correlation coefficient should be
discarded. Particularly in our experiments, we adopt the
de-correlation factor with 0.025 sec as the coherence time,
which is a typical value arising in multipath propagation
environments [8].

If the correlation coefficients are derived from two adja-
cent CSI samples spanning beyond a coherence period, they
will be discarded; otherwise, they are forwarded to the corre-
lation-based detector to perform mobile user authentication.

However, the CSI measurements may also suffer from
occasional rapid movement or strong interference, which
would destroy the correlation between adjacent CSI meas-
urements. In order to derive reliable correlation coefficients,
temporal smoothing is used to alleviate such effects, i.e.,

min(L,s+ L%J)
Kls +1,8) = — > Kl(s+1s),
max(0,s— I_%J)

(13)

where w is the length of the temporal smoothing window
size.

Correlation-Based Detector. As shown in Fig. 9, the correla-
tion-based detector authenticates the mobile user leveraging
the temporal correlation coefficients obtained from the
correlation analyzer. Given the correlation coefficients
K'(s+1,s) of L CSI measurements, we divide them into
several segments, where each has length L;. For each seg-
ment, given a threshold ¢, if there are m correlation coeffi-
cients K'(s + 1,s) > ¢, where m is derived from empirical
study, we declare the presence of attackers, otherwise the
authentication succeeds.
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Fig. 9. Work flow for the correlation-based detector.

8 PERFORMANCE EVALUATION

In this section, we present performance evaluation of the
proposed CSl-based user authentication framework in
two types of real environments, laboratory and apartment.
We show that the CSI-based authentication framework is
resilient to attacks, and outperforms existing RSS-based
authentication methods.

8.1 Experimental Setup

We conduct experiments in an 802.11n WiFi network with
two laptops (i.e., Lenovo T500 and T61) serving as monitors
that collect the wireless packets. These two laptops run
Ubuntu 10.04 LTS with the 2.6.36 kernel and are equipped
with Intel WiFi Link 5,300 wireless cards. Both Intel wireless
cards’ drivers are able to collect CSI information from each
packet [1]. A commercial wireless access point, Linksys
E2500, is sending out packets that can be captured by these
two monitors. We use the ping command on two laptops to
simulate the authentication packets continuously transmit-
ted over the network. The packet rate is set to 10 packets/
second. For each packet, we extract CSI for 30 subcarrier
groups, which are evenly distributed in the 56 subcarriers
of a 20 MHz channel. We also record the RSS value of each
packet for comparison.

We conduct experiments in two indoor environments,
i.e., a laboratory and an apartment. The laboratory repre-
sents the typical office environment, which has an office
cubicle and pieces of furniture that create complex multi-
path effects in a large room. The apartment, on the other
hand, represents the typical home environment with small
rooms and simple furniture. The size of these two environ-
ments are 11 m x 12m and 11 m x 6 m, respectively. The
experimental setups in these two environments are shown
in Fig. 10. The numbered circles in the figures are the posi-
tions used to collect CSI data for evaluating our user
authentication framework for the stationary case, and the
two red stars represent two network monitors.

8.2 Experimental Methodology

In the experiments, we collect 400 packets at each location,
and both CSI and RSS values of each packet are recorded.
When using RSS measurements for user authentication,
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we employ the RSS values collected from two network mon-
itors as the two-dimensional feature vector for clustering
and profile matching, while our proposed CSI-based
authentication framework only uses the CSI measurements
from one network monitor to perform user authentication.

To evaluate the performance of our proposed frame-
work dealing with a stationary user, we examine two
main attacking scenarios: 1) In the first attacking scenario,
both the legitimate user and the attacker are present at the
same time in the network. 2) In the second attacking sce-
nario, after the attacker obtains the legitimate user’s iden-
tity, only the attacker is active in the network. In order to
obtain the statistical results, we choose all possible point
pairs in both experimental environments and treat one
point as the position of the legitimate user and the other
point as the position of the attacker. We run the proposed
framework through all possible combinations of point
pairs. There are a total of 66 pairs for the laboratory envi-
ronment and 36 pairs for the apartment environment. The
experimental results are presented in the following sec-
tions for the attack resilient profile builder and profile
matching authenticator.

For mobile user authentication, two data transmission
patterns, including non-burst and burst, are studied. Partic-
ularly, non-burst data transmission means multiple users
(i.e., two users in this work) are alternatively transmitting
with similar low data rate at the same time, while burst data
transmission means one individual user would successively
transmit massive data packets at a high data rate during a
short period. The two transmission patterns comprehen-
sively depict the traffic pattern in real wireless environ-
ments, particularly, non-burst data transmission is for light
traffic (e.g., link maintenance packets transmission) while
burst data transmission is for heavy traffic (e.g., multimedia
transmission). For each transmission pattern, we also exam-
ine two attacking scenarios: 1) In the first attacking scenario,
both the legitimate user and the attacker are moving. 2) In
the second attacking scenario, the legitimate user is moving
but the attacker remains stationary. In both scenarios, the
legitimate user and attacker are continuously transmitting
signals with the same device ID.

8.3 Metrics
In order to evaluate the performance of our proposed user
authentication framework for stationary users, we define
the following two metrics: attack detection ratio and authen-
tication accuracy.

Attack Detection Ratio (During Profile Building). We define

the attack detection ratio R as the number of correctly
detected spoofing attacks over the total number of
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experiments with spoofing attacks. The spoofing attacks
presented when building the user profile belong to the
attacking scenario 1. Given a total number of P attacking
cases the attack detection ratio can be written as

I e 0 D.<t
R—]—D;Hps.t. Hp_{l D>

where D, is the distance between two centroids of clusters
formed in the profile builder, and 7 is the threshold used for
spoofing attack detection.

Authentication Accuracy (During User Authentication). We
define the authentication accuracy A, as the number of cor-
rectly classified packets over the total number of packets col-
lected in the pth attacking run. The attacks could belong to
either the attacking scenario 1 or 2. We use NV, , to denote the
number of packets that are sent by a legitimate user v and are
correctly determined as being from the user u by our system.
Similarly, we use N, , to denote the number of packets sent
by the adversary using the identity of the legitimate user u
and are correctly determined as not being from user u. We
then define the authentication accuracy for the pth experi-

Nyp+N! .
mental run as A4, = —%—"2 where N, , is the total number of
a,p >

packets received with user identity u, and N, , + N, , < N .

We further define the average authentication accuracy and
worst authentication accuracy as shown below to evaluate the
general and worst-case performance.

(14)

o  Average authentication accuracy: Given P tested cases,
the average authentication accuracy is given as
Am;g = %Zg})’:l Ap/

o  Worst authentication accuracy: The worst authentica-
tion accuracy chooses A, from the attacking case
with the smallest number of N,, and Nz’w as
Ayorst = min, A,.

8.4 Evaluation Results
8.4.1 Attack Detection Study During Profile Building for
a Stationary User

We first compare the effectiveness of our Attack-resilient
Profile Builder when determining the presence of a spoofer
(during profile building) using CSI to that using RSS. We
examine the attack detection ratio by varying the threshold
7. As shown in Fig. 11, the results show that the averaged
detection ratio for the proposed CSI based approach
achieves 0.92 with the optimal distance threshold 17 dB in
Fig. 11a, while the maximum detection ratio for the RSS-
based method is only 0.4 with distance threshold 2 dB as
shown in Fig. 11b. This observation indicates that our
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profile builder can effectively determine whether the net-
work environment is benign or a spoofer is present when
building the user profiles.

8.4.2 Authentication Accuracy Study for a Stationary
User

Discriminating Two Far-Away Users with Similar RSS Finger-
prints. Due to the irregularity of wireless signal propagation,
two geographically distant users may share similar RSS
signatures. For example, in Fig. 10a, the two positions 6 and
9 are about 6 — 7 m away from each other, but their RSS fin-
gerprints obtained from our network monitor look similar;
positions 8 and 12 present the same signal phenomenon.
This makes RSS-based user authentication schemes suffer
poor performance when two legitimate users (but physi-
cally separated) present similar signal fingerprints. In par-
ticular, we observe that the authentication accuracy for the
RSS-based method degrades to only around 0.64 as shown
in Fig. 12. However, our proposed CSI-based method could
still achieve the authentication accuracy close to 1. These
results confirm that CSI measurements provide fine-grained
information on differentiating users, even when their RSS
measurements are similar.

Comparison with RSS-Based Methods. We next study the
overall performance of our CSI based user authentication
method. Fig. 13 shows the comparison of the authentication
accuracy when using CSl-based and RSS-based methods
in the two different environments (i.e., a laboratory and
an apartment). We note that the RSS-based method relies on
RSS values collected from two network monitors to perform
user authentication, while our proposed CSI-based authen-
tication framework only uses the CSI measurement from
one antenna at one network monitor. We observe that our
proposed CSl-based method outperforms the RSS-based
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Fig. 14. CSl-based user authentication accuracy when involving single
and multiple antennas.

method in both experimental environments. Specifically,
Fig. 13a shows that the average authentication accuracy for
CSl-based method is very high (above 0.984), and the RSS-
based method has a lower authentication accuracy (i.e.,
0.92). Furthermore, we see that the worst authentication
accuracy for RSS-based method reduces to around 0.27 and
0.36 in the apartment and laboratory environments respec-
tively, whereas our CSl-based method maintains high
authentication accuracy over 0.95 as presented in Fig. 13b.
These observations strongly indicate the robustness of our
CSl-based user authentication framework even when only a
single antenna is used on WiFi devices.

Impact of Single/Multiple Antennas. We further examine the
performance when employing measurements from multiple
antennas. We expect that using measurements from multiple
antennas can provide better reliability for user authentica-
tion. Fig. 14 shows that both the average and worst authenti-
cation accuracy exhibit an increasing trend when more
antennas are used. In particular, the authentication accuracy
of using a single antenna in the apartment and laboratory
environments is over 0.95. When the number of antenna
pairs (ie., a set of transmitting and receiving antennas)
increases from 1 to 4, the average authentication accuracy in
both laboratory and apartment further improves, and the
worst authentication accuracy improves even more. We also
observe that when using three antenna pairs in the labora-
tory environment the authentication accuracy has a slight
drop when comparing to that of using two antenna pairs.
This is because although current commodity wireless devi-
ces are usually equipped with multiple antennas, the main
antennas usually have better quality of signal reception.
Therefore, including the CSI samples from the main anten-
nas (i.e., using one or two antenna pairs in our experiments)
results in better stability of user authentication.

Impact of User Profile Size. Finally, we study how the num-
ber of packets (i.e., user profile size) employed to build the
user profile affects the performance of our framework. We
vary the size of the user profile from 1 to 200 packets, and the
corresponding average authentication accuracy is shown in
Fig. 15. When the size of the user profile increases, the
authentication accuracy increases and then maintains a high
level (i.e., over 0.95). We note that even if the profile of each
user contains only one CSI sample, the authentication accu-
racy is still over 0.91. These results demonstrate that our pro-
file builder is highly effective in our proposed framework.

8.4.3 Authentication Performance for a Mobile User

To evaluate the authentication performance for a mobile user,
we study both non-burst and burst data transmission patterns.
Note that the data rate for non-burst data transmission is
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Fig. 16. Mobile user authentication accuracy for non-burst transmission.

TABLE 1
Authentication Performance for Non-Burst Data Transmission
Threshold Scenario 1 Scenario 2
DR FPR DR FPR
0.1 98.3% 0 97.4% 0%
0.2 99.3% 0 98.8% 0%
0.3 100% 0.1% 99.5% 0%

10 pkt/sec, while burst data transmission is 100 pkt/sec. Given
the fixed data transmission rate, the authentication accuracy
maintains when varying the de-correlation factor threshold.
Each round of the authentication process takes about three sec-
onds. For each data transmission pattern, we also examine two
attacking scenarios as introduced in Section 8.1.

Non-Burst Data Transmission Study. First we study the
authentication performance under non-burst data transmis-
sion. In order to evaluate the authentication performance
under the impact of different parameters, we vary the corre-
lation coefficient threshold from —0.1 to 1. Further, we eval-
uate the performance by varying the parameter m from 1 to
20. Note that we require m correlation coefficients of adja-
cent CSI measurements to exceed the threshold for user
authentication. The total number of packets used for each
round of user authentication is about 30. The authentication
accuracy for Scenarios 1 and 2 are shown in Figs. 16a and
16b respectively, where V' (m, x) indicates the authentication
accuracy curve under the requirement of at least m correla-
tion coefficients of adjacent CSI measurements beyond dif-
ferent correlation coefficient thresholds. For both scenarios,
as the correlation coefficient threshold increases, the authen-
tication accuracy increases first and then decreases. Particu-
larly, given m = 20, the authentication accuracy first goes
up to as high as 99.7 percent with the threshold at around
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Fig. 17. Mobile user authentication accuracy for burst transmission.

TABLE 2
Authentication Performance for Burst Data Transmission
Threshold Scenario 1 Scenario 2
DR FPR DR FPR
0.6 79.5% 0 70.6% 0%
0.7 88.3% 0 80.5% 3.6%
0.8 93.6% 7.2% 92.2% 13.4%

0.4, and then decreases to around 68.1 percent as the thresh-
old reaches 1 in Scenario 1. A similar trend is also observed
in Scenario 2 (i.e., given m = 20, the authentication accuracy
reaches a maximum of 99.6 percent at the threshold ¢ = 0.3,
and then falls to 69.5 percent as the threshold increases
to 1). Further, we also observe that the proposed approach
achieves high authentication accuracy (i.e., over 99 percent)
under all values of m ranging from 1 to 20.

In addition, to provide a more comprehensive view of
authentication performance of the proposed approach, we
also summarize the detection ratio and false positive ratio
in Table 1 with m = 20. For both scenarios, given appropri-
ate threshold values, the detection ratio would approach
100 percent while the false positive ratio is close to 0 per-
cent. The above results confirm that the proposed frame-
work is highly effective in authenticating mobile users with
non-burst data transmission.

Burst Transmission Study. Next we examine the authenti-
cation performance for burst data transmission. The authen-
tication accuracy for burst data transmission also follows
the same trend as non-burst data transmission as the thresh-
old value increases. Different from non-burst data transmis-
sion, burst data transmission involves many long CSI
sequences from a single user, which leads to high correla-
tion coefficients over a long period. So, the number of low
correlation coefficients is fewer than that in non-burst data
transmission. Therefore the thresholds to achieve maximum
authentication accuracy should be higher. Consequently, a
higher threshold would also falsely determine some low
correlation coefficients from a single user as attacks. As
shown in Figs. 17a and 17b, given m = 20, the maximum
authentication accuracy is 93.25 and 90 percent for Scenarios
1 and 2 respectively when the threshold is 0.8. Therefore,
the overall mobile user authentication performance under
burst data transmission is slightly worse than that of non-
burst data transmission. The detection ratio and false posi-
tive ratio for burst transmission are presented in Table 2,
which confirm good authentication performance for both
attacking scenarios. Particularly, as the threshold increases
from 0.6 to 0.8, the detection ratio increases from 79.5 and
70.6 percent to 93.6 and 92.2 percent for Scenarios 1 and 2
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respectively, while the false positive ratio increases from 0
and 7.2 percent to 0 and 13.4 percent for Scenarios 1 and 2
respectively.

9 CONCLUSION

In this paper, we have proposed to utilize channel state infor-
mation to perform practical user authentication in wireless
networks. The fine-grained channel information revealed in
CSI has the potential to perform accurate user authentication.
We have proposed a CSI-based user authentication frame-
work that can work with both stationary and mobile users.
Particularly, stationary user authentication includes an
Attack-resilient User Profile Builder and Profile Matching
Authenticator. The Attack-resilient Profile Builder employs
clustering analysis to intelligently determine whether
the network environment is benign without the presence of
an identity-based attack when constructing the profile for the
legitimate user. The Profile Matching Authenticator performs
packet level user authentication grounded on Support Vector
Machine techniques. It has the capability to distinguish
between two users even when they possess similar signal fin-
gerprints. Mobile user authentication leverages the temporal
correlation of the wireless channel and includes a Temporal
Correlation Analyzer and Correlation-based Detector. The
Temporal Correlation Analyzer derives the temporal correla-
tion coefficients between consecutive CSI measurements after
filtering, whereas the Correlation-based Detector performs
authentication based on an empirical threshold. Our exten-
sive experiments conducted in both laboratory and apart-
ment environments confirm the feasibility of exploiting CSI
to perform accurate user authentication. The evaluation
results show that the proposed CSI-based approach is highly
effective for both stationary and mobile users.
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