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ABSTRACT
Distributed machine learning paradigms, such as federated
learning, have been recently adopted in many privacy-critical
applications for speech analysis. However, such frameworks
are vulnerable to privacy leakage attacks from shared gra-
dients. Despite extensive efforts in the image domain, the
exploration of speech privacy leakage from gradients is quite
limited. In this paper, we explore methods for recovering
private speech/speaker information from the shared gradients
in distributed learning settings. We conduct experiments on
a keyword spotting model with two different types of speech
features to quantify the amount of leaked information by
measuring the similarity between the original and recovered
speech signals. We further demonstrate the feasibility of in-
ferring various levels of side-channel information, including
speech content and speaker identity, under the distributed
learning framework without accessing the user’s data.

Index Terms— distributed learning, privacy leakage,
speech processing

1. INTRODUCTION

Voice assistants, such as Google Assistant, Amazon Alexa,
and Apple Siri, have been widely deployed on various smart-
phones and smart speakers, as they provide a natural and con-
venient way for user interaction. The modern voice user in-
terface is powered by deep neural networks, which enables
efficient speech processing for many tasks, such as automatic
speaker verification (ASV) [1] and automatic speech recogni-
tion (ASR) [2]. The remarkable performance of such models
is fueled by a growing amount of training data; yet collect-
ing data from users is becoming increasingly difficult due to
privacy regulations [3, 4] and user privacy concerns.

Distributed machine learning, which allows multiple data
holders to jointly train a machine learning model under the
coordination of a central server, has attracted great research
attention. Compared with the conventional centralized learn-
ing framework, data parallelism distributed training not only
scales better to larger data sizes, but also provides a level
of privacy to participating users by encoding the data mini-
mization principle: clients are allowed to keep their private
data on the local device and only share the gradient infor-
mation to the server for updating the model. As such, dis-
tributed learning, especially the emerging federated learn-

Fig. 1. Illustration of speech privacy leakage from shared gra-
dients in the distributed learning scenario.

ing (FL), has been quickly deployed in production for many
speech-related tasks, such as speaker verification [5] and key-
word spotting [6].

Recently, several studies [7, 8, 9, 10] have revealed that
image data can be recovered to some extent through the
shared gradients in distributed learning (known as gradi-
ent leakage, or gradient inversion), which may pose severe
threats to user’s data privacy. However, to date, there has
been limited exploration of gradient leakage in the speech
domain. Compared with image data, speech recordings are a
rich source of personal and sensitive information that can be
used to support a wide spectrum of applications, from sen-
timent analysis to spoken language recognition, and further
to voice biometric profiling. Therefore, distributed learning
involving speech data should be evaluated carefully to fully
understand its potential privacy vulnerabilities.

To fill this gap, this work investigates the risk of gradient
leakage on speech data with the following questions:

1. How to recover private speech data from the shared gra-
dients, if feasible?

2. What level of private information (e.g., speech content,
speaker identity, etc.) can be exposed from gradients?

To answer the first question, we extend on previous gra-
dient leakage attacks in the image domain and provide a
two-stage inversion method that can numerically restore the
speech waveform from the gradients shared by the client,
which is illustrated in Fig. 1. We find that different from the
image domain, deep learning models for processing speech
data are usually trained on condensed speech features rather
than the raw waveform. As a result, inverting the gradients



only recovers the features of the original signal. Moreover,
unlike the image data which has well-defined value space for
each pixel, the spectral/cepstral feature of speech signals has
a wider range and is more prone to subtle errors which would
be amplified when projecting back to the time domain, and
thus would require more careful treatment.

To answer the second question, we design and conduct
extensive experiments to investigate the amount of informa-
tion that can be recovered through the gradients. We explore
a distributed learning scenario of speech command recog-
nition on two types of features, i.e., Mel-spectrogram and
Mel-frequency cepstral coefficients (MFCC), and utilize a
suite of 4 different metrics to quantify the recovered speech
quality and the intelligibility of the recovered speech content.
Moreover, we further inspect the amount of leaked voice
biometric information leveraging a pre-trained speaker veri-
fication model. Our results show that compared with MFCC,
using Mel-spectrogram as the front-end feature would lead
to more leakage in speech content and speaker information
of the client’s private speech data from the shared gradients.
These findings can help the community understand the poten-
tial of gradient leakage on different speech features under the
gradient sharing framework and design distributed learning
schemes with enhanced privacy protection.

2. RELATED WORK

Distributed Learning for Speech. Recently, an increasing
amount of research effort has been put into utilizing feder-
ated learning as a privacy-enhancing technique to improve
neural networks on distributed user devices, such as smart-
phones and smart speakers. Besides early studies [11, 12, 13]
conducted in simulated environments, many federated learn-
ing frameworks for speech processing have already been de-
ployed in production, including Apple’s speaker verification
model [5] and Google’s keyword spotting model [6]. As hu-
man speech contains rich semantics of sensitive and personal
information, there is a pressing need for thoroughly under-
standing the privacy risks of models trained on speech data in
a distributed manner.
Privacy Leakage from Gradients. A few recent studies have
shown that sharing gradients in distributed learning is not as
safe as it has been presumed. Zhu et al. [7] first demon-
strated that it is possible to recover clients’ private images
from the shared gradients by generating fake images that min-
imize the gradient matching loss. Geiping et al. [8] extended
this method to deeper neural networks with higher resolu-
tion images with a different loss function design. Following
work [9, 10] further improved on this by exploring various
prior information. Compared to the remarkable progress in
the image domain, there is a lack of research on the feasibility
and severity of gradient leakage in speech data. To our knowl-
edge, the most relevant study by Dang et al. [14] proposed a
method to infer speaker identity from gradients of an ASR

model. However, such a method only recovers the speech
features instead of the original speech waveform. Moreover,
compared with ASR models that are trained on long spoken
sentences, the lightweight keyword spotting models for rec-
ognizing speech commands are more commonly deployed in
distributed learning setting, yet the privacy risk there is still
unexplored. This work is devoted to filling this research gap.

3. METHODOLOGY

3.1. Problem Formulation

We consider a supervised learning task under the canoni-
cal distributed learning setting that involves two parties: the
server S and the clients C. The learning objective is to op-
timize the parameters θ of a neural network fθ to minimize
the empirical risk measured by loss function L on all train-
ing data: minθ

∑
c∈C

∑
(xi,yi)∈Dc

L(fθ(xi), yi), where xi,
yi are the local data and label from client c’s local dataset
Dc. Instead of directly sharing their private data, federated
learning allows participating clients to only shared the gra-
dients computed on their private data, i.e., ∇θL(fθ(xi), yi).
The server then collects and aggregates gradients from all
participating clients to update the global model for each com-
munication round.
Threat Model. We assume the adversary cannot interfere
with the normal federated learning procedure but has access to
the gradients uploaded by each individual client. In practice,
the adversary can be an honest-but-curious server or a mali-
cious analyst that eavesdrops on the communication channel.
Objective. The adversary’s objective is to infer private in-
formation about the client by attempting to reconstruct the
client’s private data. Previous studies [7, 8] have shown that
this can be done through generating synthetic data samples to
match the client’s gradients. Let ∆θ denote the actual gradi-
ents shared by the client and x′, y′ represent the synthetic data
sample and label. Formally the adversary solves for:

x′∗, y′∗ = argmin
x′,y′

d(∆θ,∇θL(fθ(x′), y′)), (1)

where x′∗, y′∗ is the minimizer of the distance between gra-
dients measured by a distance metric d. Intuitively, if the
gradients computed on the synthetic data closely match the
actually shared gradients, the synthetic data will also recover
the important semantics of the client’s private data. In prac-
tice, as the label y′∗ can be analytically restored from the gra-
dients [8, 9], the adversary only needs to solve for x′∗.

3.2. Recovering Speech Data From Gradients

Challenge. In the image domain, deep learning models are
usually trained to directly process raw imagery data. Differ-
ently, in the speech domain, it is a common practice to first
extract spectral or temporal acoustic features (e.g., spectro-
gram or cepstral coefficients) from the raw speech signal and
then feed the extracted features into the deep learning model.



This creates an additional layer of difficulty to gradient inver-
sion since solving Eq. 1 only recovers the features rather than
the original speech waveform.
Method. To address the above challenge, the proposed
method recovers speech data from the shared gradients in
the following two stages:

(1) Feature Reconstruction. The goal of the first stage is
to recover the acoustic features from the gradients shared by
the users. Specifically, let u denote the set of 2-dimensional
spectral features extracted from speech waveform x. We then
solve the optimization problem in Eq. 1 by minimizing the
Euclidean distance in the model parameter (gradient) space:

u′∗ = argmin
u′

||∆θ −∇θL(fθ(u′), y′∗)||22 + λr(u′), (2)

where r is a regularization term and λ > 0 is a weighting pa-
rameter. In this work, we use anisotropic total variation [15]
as the regularizer, i.e., r(u′) = ||dhu′||1 + ||dvu′||1, where
dh, dv denote the horizontal and vertical partial derivative op-
erators, respectively. We do not bound the search space for h′

during optimization since unlike image data, the values of the
acoustic features do not reside in a well-defined range.

(2) Waveform Reconstruction. The goal of the second
stage is to reconstruct the speech waveform based on the
features recovered from the first stage. In this work, we con-
sider recovering the waveform from two common types of
features for speech processing: Mel-spectrogram and MFCC.
To convert a Mel-spectrogram back to a time-domain sig-
nal, we first create Mel filter banks and then approximate
the normal short-time Fourier transform (STFT) magnitudes
by searching for the non-negative least squares solution that
minimizes the Euclidian distance between the target Mel-
spectrogram and the product of the estimated spectrogram
and the filter banks. Then the Griffin-Lim algorithm [16] is
applied to produce the speech waveform by estimating the
missing phase information. As for MFCCs, an extra step is
needed to first invert the cepstral coefficients to approximate
a Mel-spectrogram. This is done by first applying the inverse
discrete cosine transform (iDCT) and then map the decibel-
scaled results to a power spectrogram1. After that, the regular
Mel-spectrogram inversion procedure is applied to further get
the estimated waveform.

4. EXPERIMENTS

4.1. Experimental Setting

Dataset. We use speech data from the Speech Commands
dataset [17] to conduct evaluation. The dataset was developed
for developing and testing compact and effcient on-device
keyword spotting model, which is one of the most widely-
adopted federated learning applications in production, and
thus is well-suited for our task. Each sample of the dataset

1https://librosa.org/doc/main/generated/librosa.
feature.inverse.mfcc_to_mel.html

Table 1. Model used in evaluation.
Type Kernel Stride Output

Conv2D (3, 3) (1, 1) (30, 30, 32)
Conv2D (3, 3) (1, 1) (28, 28, 64)

MaxPooling2D (2, 2) (2, 2) (14, 14, 64)
Flatten – – 12544

FC – – 128
FC – – 10

contains 1 second recording of spoken speech commands
sampled at 16kHz and corresponding label. We select a sub-
set of the dataset that contains 10 common words (i.e., “yes”,
“no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”, and
“go”) as in the first released version of the dataset.
Front-end Feature Extraction. To extract acoustic features,
the speech signal is first pre-emphasised with a factor of 0.97.
Then speech frames are created using overlapping Hamming
windows with length of 2, 048 samples and frame-shift of 512
samples. For Mel-spectrogram, 512 point fast Fourier trans-
form (FFT) with 32 Mel bands is used. For MFCC, 128-
channel filterbank is used to extract 32-dimensional coeffi-
cient features which are further processed by cepstral mean
and variance normalization (CMVN).
Distributed Learning Setting. (1) Model. We adopt the
same model structure as used in the Tensorflow keyword
recognition example2. The model is composed of two 2D
convolution layers, one max-pooling layer, and two fully-
connected layers. The detailed model architecture is de-
scribed in Table 1. (2) Gradient Computation. We assume
the clients compute one local step of gradient descent on one
random sample from their private dataset and then send back
the gradients (i.e., distributed stochastic gradient descent).
Parameters. We solve Eq. 2 using Adam optimizer for 8, 000
iterations with λ = 0.001 and a learning rate of 0.01. To
avoid local minimum, each sample is given 2 trials and the
reconstruction result with the lower loss is selected.

4.2. Experimental Results

4.2.1. Reconstruction Evaluation

To evaluate the reconstruction performance, we compare the
resulting speech signal recovered from gradients using our
method with the original signal using the following metrics:
Evaluation Metrics. (1) F-MSE: the mean squared error
between the ground truth features of the original speech and
the reconstructed features. (2) W-MSE: the mean squared
error between the original speech waveform and the recon-
structed waveform. (3) PESQ: the perceptual evaluation of
speech quality (PESQ) [18] score is designed for end-to-end
quality assessment of degraded audio sample in narrow-band
telephone networks. The computed score is in the range
of [−0.5, 4.5], with higher scores indicating better speech

2https://www.tensorflow.org/tutorials/audio/
simple_audio



Table 2. Reconstruction results on 400 speech samples.

F-MSE ↓ W-MSE ↓ PESQ ↑ STOI ↑
Inverting from Features

Mel-spectrogram − 0.0097
± 0.0130

2.1090
± 0.3563

0.8082
± 0.0715

MFCC − 0.0091
± 0.0119

2.1041
± 0.3762

0.7856
± 0.0760

Inverting from Gradients

Mel-spectrogram 0.0002
± 0.0017

0.0095
± 0.0129

2.0427
± 0.3816

0.8004
± 0.0804

MFCC 5701.6225
± 1919.7741

0.0153
± 0.0086

1.3886
± 0.1750

0.4259
± 0.1234

Time
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Fig. 2. Visualizing reconstructed speech command “yes”.

quality. (4) STOI: the short-time objective intelligibility
(STOI) [19] metric measures the intelligibility of degraded
speech signals based on a correlation coefficient between the
temporal envelopes of the reference and degraded signals in
short-time overlapping segments.
Results. Table 2 presents the statistical results of conducting
the reconstruction on 400 random speech samples from the
testing set. We also show the results of inverting from the
ground truth features (i.e., only conducting waveform recon-
struction) as baseline for comparison. An example of visual-
izing the reconstructed speech command “yes” is provided in
Fig. 2. We observe that for Mel-spectrogram, inverting from
gradients yields a similar performance as directly inverting
from features, and the reconstructed waveform is very close
to the original waveform, with measured W-MSE < 0.001
and PESQ > 2. However, for MFCC, inverting from gradi-
ents would induce a large distortion, causing the quality of

Table 3. Speaker re-identification results on 400 speech sam-
ples.

Score ↑ Success Rate ↑
w.r.t. Inverted Signal from Features

Mel-spectrogram 0.7288 ± 0.1386 99.25%
MFCC 0.1574 ± 0.1119 16%

w.r.t. Original Signal
Mel-spectrogram 0.4445 ± 0.1450 90.5%

MFCC 0.0514 ± 0.0916 2.5%

the reconstructed speech to degrade drastically. This is po-
tentially because the coefficient values are in decibel scale
and has high variance and thus are prone to small perturba-
tions, which makes it harder to launch gradient leakage at-
tacks against MFCCs.

4.2.2. Speaker Re-identification

To examine whether the speaker information (i.e., voice bio-
metric) can be retained through the reconstruction, we pass
the signal recovered from gradients and the reference signal
into a speaker verification model and report the cosine simi-
larity score of the embeddings and the success rate of the two
signals being recognized as the same speaker. To perform
speaker verification, we use the ECAPA-TDNN model [20]
pretrained on Voxceleb dataset provided by SpeechBrian3.
Results. Table 3 presents the statistical results of conducting
speaker re-identification on the same set of 400 speech sam-
ples. For comparison, we show the results measured w.r.t.
both the inverted signal from the ground truth features and
w.r.t. the original signal. We observe that the speech signals
reconstructed from Mel-spectrogram preserve most speaker
information, with 99% and 90% chance to pass the speaker
verification when compared to the inverted signal and original
signal, respectively. In contrast, speech signals reconstructed
from MFCC have a very low probability to be verified as the
same speaker, especially when directly compared to the orig-
inal signal.

5. CONCLUSION

In this work, we study the potential of the privacy leakage
of speech data from shared gradients by proposing a two-
stage inversion method that sequentially achieves speech fea-
ture reconstruction from gradients and waveform reconstruc-
tion from the recovered features. Through extensive exper-
iments, we demonstrate that compared to Mel-spectrogram,
MFCC exhibits better resilience against gradient leakage at-
tacks, with less leaked speech/speaker information. Future
work could investigate neural vocoders for better waveform
reconstruction quality.
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