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ABSTRACT
Existing efforts in audio adversarial attacks only focus on the sce-
narios where an adversary has prior knowledge of the entire speech
input so as to generate an adversarial example by aligning and mix-
ing the audio input with corresponding adversarial perturbation.
In this work we consider a more practical and challenging attack
scenario where the intelligent audio system takes streaming audio
inputs (e.g., live human speech) and the adversary can deceive the
system by playing adversarial perturbations simultaneously. This
change in attack behavior brings great challenges, preventing exist-
ing adversarial perturbation generationmethods from being applied
directly. In practice, (1) the adversary cannot anticipate what the
victim will say: the adversary cannot rely on their prior knowledge
of the speech signal to guide how to generate adversarial pertur-
bations; and (2) the adversary cannot control when the victim will
speak: the synchronization between the adversarial perturbation
and the speech cannot be guaranteed. To address these challenges,
in this paper we propose AdvPulse, a systematic approach to gen-
erate subsecond audio adversarial perturbations, that achieves the
capability to alter the recognition results of streaming audio inputs
in a targeted and synchronization-free manner. To circumvent the
constraints on speech content and time, we exploit penalty-based
universal adversarial perturbation generation algorithm and incor-
porate the varying time delay into the optimization process. We
further tailor the adversarial perturbation according to environmen-
tal sounds to make it inconspicuous to humans. Additionally, by
considering the sources of distortions occurred during the physical
playback, we are able to generate more robust audio adversarial
perturbations that can remain effective even under over-the-air
propagation. Extensive experiments on two representative types
of intelligent audio systems (i.e., speaker recognition and speech
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command recognition) are conducted in various realistic environ-
ments. The results show that our attack can achieve an average
attack success rate of over 89.6% in indoor environments and 76.0%
in inside-vehicle scenarios even with loud engine and road noises.
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1 INTRODUCTION
Since audio interaction using one’s voice has become a major con-
venience in modern times, voice interaction in our daily lives has
been becoming either an alternative or even a full replacement of
traditional graphical user interfaces. Especially, recent advances
in deep learning techniques have enabled machines to achieve a
near-human performance in both understanding the speech con-
tent (i.e., speech recognition) [21] and identifying the speaker from
vocal traits (i.e., speaker recognition) [25]. Benefiting from such an
unprecedented performance advancement, modern deep-learning-
powered intelligent audio systems have been widely integrated in
almost every corner of our daily lives. For instance, people can talk
to their smartphones (e.g., Siri [8], Bixby [40]) or smart speakers
(e.g., Google Home [20], Amazon Echo [4]) to set an alarm, inquire
personal schedules, and control smart home appliances, etc. Mobile
banking (e.g., Chase Voice ID [7]) exploits remote voice authenti-
cation to quickly verify users and prevent fraud, and drivers can
operate their cars and access their functions simply through voice
commands (e.g., Hey BMW [23], Tesla Voice Commands [46]).

With the ever-growing deployment of such intelligent audio
systems, their vulnerabilities have gained considerable attention
and have become an increasing public concern recently. Specifically,
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deep neural networks (DNNs), serving as the computational core
of the state-of-the-art intelligent audio systems, are revealed to be
inherently vulnerable to adversarial attack. This attack is where
the adversary can add imperceptible adversarial perturbations to
speech inputs to deceive DNN models, making the models yield
false predictions. This type of attack was initially discovered in
the image domain [9, 19, 33, 45] and has since spurred research
interests in the audio domain.

Existing studies [3, 10, 13] demonstrated that it is possible for
the adversary to inject unnoticeable adversarial perturbations to
the original audio and alter the transcription result. An existing
study [30] in the speaker verification task also showed that adding
carefully-crafted adversarial perturbations can lead to impostors
being falsely recognized as legitimate speakers. However, these
studies only launched digital domain attacks, which feed the crafted
adversarial examples to the intelligent audio systems directly with-
out considering any physical effects (e.g., audio distortion, ambient
noises) during the over-the-air propagation in practical scenarios.
To improve the robustness of the generated adversarial examples,
several recent studies [31, 52] use room impulse response (RIR) to
encode the acoustic channel state information (CSI) and launch prac-
tical over-the-air attacks. There are also other efforts attempting to
make the adversarial noise imperceptible to humans by leveraging
psychoacoustic effects [38, 41] or extend the over-the-air attack
range by employing domain adaption algorithms [12].

Limitations of Prior Research. Despite the initial success of
the over-the-air audio adversarial attacks (e.g., [12, 31, 52]), they
only focus on the scenarios where the adversary has prior knowl-
edge of the entire speech input (i.e., Static-speech attack scenario
as shown in Figure 1(a)). For each specific pre-recorded speech,
the adversary can add an adversarial perturbation to form an ad-
versarial example, which can then be played by a loudspeaker to
deceive intelligent audio systems. However, these attacks are not
applicable to streaming-speech attack scenarios, which are more
practical and common in the daily use of intelligent audio systems,
as shown in Figure 1(b). In this scenario, the intelligent audio sys-
tem takes streaming audio inputs (e.g., live human speech) and the
adversary can fool the system by playing imperceptible adversarial
perturbations through a nearby loudspeaker. We summarize the
following three major limitations preventing existing attacks from
being launched in practice with streaming audio input below:

(1) Modifying the Entire Audio Input.Most existing attacks require
the generated adversarial perturbation to be added on the entire
audio input. In other words, the generated perturbation should have
the exact same duration as the audio input, which is not feasible
when handling streaming inputs.

(2) Synchronization. Existing attacks are based on the assumption
that the input audio and the generated adversarial perturbation
are strictly synchronized. To guarantee the synchronization, the
adversarial perturbation is usually mixed with the audio input
beforehand and then played through a loudspeaker when launching
the attack.

(3) Prior Knowledge on the Audio Input. Most existing attacks re-
quire the adversary to have access to the input audio in advance.
That means the adversary needs to first collect an audio clip and
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Figure 1: Comparison of the static-speech attack scenario
used in existing audio adversarial attacks and the proposed
streaming-speech attack scenario.

then compute the adversarial perturbation specifically for that piece
of audio, which is not applicable to streaming input either.

Subsecond-levelUniversal, Synchronization-free, andTar-
getedAdversarial Perturbation.Due to the time-sensitive behav-
ior of audio signals, it is unrealistic to assume that the adversary
can anticipate the upcoming audio signal and allocate a particular
amount of time to modify the entire audio signal in a synchronized
manner. The above limitations show that the existing attacks are
only feasible in controlled static-speech scenarios (e.g., playing
prefabricated audio adversarial examples). To circumvent these lim-
itations in attacking streaming-speech-involved audio intelligent
systems, in this paper, we propose AdvPulse, a means to generate a
subsecond-level adversarial perturbation which can be added at any
point of the streaming audio input to launch targeted adversarial
attacks. The workflow of the proposed attack is illustrated in Fig-
ure 2. Specifically, 1○ instead of modifying the entire audio input,
we only need to add a very short adversarial perturbation of ∼ 0.5
seconds to the audio input; 2○ we do not require synchronization
between the input audio and the adversarial perturbation (i.e., the
adversarial perturbation can be injected anywhere in the streaming
audio input); and 3○ instead of crafting adversarial perturbation for
each specific input, we generate input-agnostic universal adversar-
ial perturbation that can make arbitrary audio input (i.e., streaming
speech) to be mis-recognized as the adversary-desired label.

To launch such an adversarial attack to deceive intelligent au-
dio systems with streaming-speech input, we designed a series
of mechanisms to address the aforementioned major limitations.
Specifically, to release the requirement of synchronization, we pro-
pose to add a subsecond audio adversarial perturbation and adopt
gradient-based adversarial machine learning algorithm to maxi-
mize the expected output probability of the target class over dif-
ferent delay conditions. This process enables that the adversarial
perturbation can be added at any timestamp of the audio input
while maintaining effective. Moreover, we exploit penalty-based
universal training on a set of speech samples to craft audio-agnostic
adversarial perturbation that can be added to arbitrary speech (e.g.,
streaming speech) causing the intelligent audio system to output
any adversary-desired label. To make the generated adversarial per-
turbation unnoticeable to humans, we add more restrictions in its
generation phase, making the short adversarial perturbation resem-
ble environmental sounds (e.g., bird singing, car horns, or HVAC
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Figure 2: Workflow of the proposed attack.

noises). Additionally, to improve the robustness of the generated
adversarial perturbation during physical playback, we utilize sev-
eral techniques to address main sources of over-the-air distortion
(e.g., speaker and microphone limitations, reflection and reverber-
ation effects, and ambient noises). To expand the understanding
of the real-world vulnerability of intelligent audio systems, we
evaluated our adversarial attack on two representative types of
intelligent audio systems: X-vectors [44], the state-of-the-art DNN-
based speaker recognition model, and Google’s speech command
recognition model [39]1. We summarize our main contributions as
follows:
• To the best of our knowledge, this is the first work to design
a universal, synchronization-free and targeted adversarial at-
tack against intelligent audio systems, particularly for streaming-
speech attack scenario (Figure 1(b)), using subsecond adversarial
perturbations.
• We utilize the penalty-based universal adversarial perturbation
generation algorithm and optimize the adversarial perturbation
over the entire time delay distribution, rendering the attack to
be robust to arbitrary streaming audio with varying time delay
conditions.
• We propose to use an environmental sound mimicking technique
to make the generated subsecond adversarial perturbation resem-
ble situational sound effects (e.g., phone’s notification sound, car
horns), making the generated perturbation more inconspicuous
to human listeners.
• By incorporating the main sources of distortion occurred during
physical playback (i.e., frequency response of speaker and micro-
phone, reflection and reverberation, and ambient noise) into the
adversarial perturbation generation process, the effectiveness of
adversarial perturbations in physical over-the-air environments
can be kept.
• We performed case studies on both speaker recognition and
speech command recognition models. Extensive experiments are
conducted in both the digital and physical domains, including
inside an office, an apartment, and inside-vehicle environments.
The results show that our attack can achieve a high attack success
rate in deceiving these models with streaming-speech inputs
(e.g., overall 89.2% and 90.3% for speaker recognition and speech
command recognition in realistic settings, respectively).

2 RELATEDWORK
Individual audio adversarial attacks. Research efforts on defeat-
ing intelligent audio systems started with individual adversarial
attacks, which specifically craft unique perturbations for each indi-
vidual audio sample to fool the system. For example, in speech recog-
nition tasks (i.e., speech-to-text transcription), Cisse et al. [13] first

1Audio and video samples are available at https://mosis.eecs.utk.edu/advpulse.html

showed that small distortions added to the input audio can lead to
false transcriptions. Several follow-up studies leveraging genetic al-
gorithm [3] or iterative gradient descent approaches [10, 12, 38, 52]
demonstrated the success of generating more powerful adversarial
examples that can alter the transcription to any adversary-desired
content. In speaker recognition tasks, existing studies [11, 30, 31, 55]
found that it is possible to manipulate the recognition result (e.g.,
making an impostor recognized as legitimate user) by injecting
adversarial perturbations to the original audio. However, the afore-
mentioned methods require prior knowledge on each individual
speech input sample to craft corresponding adversarial perturba-
tions, resulting in tremendous computational cost when generating
multitude adversarial examples. This also limits the attack to merely
time-insensitive settings such as generating adversarial examples
from pre-recorded audio, and has prevented it from being deployed
in more realistic scenarios (e.g., injecting adversarial perturbations
on live human speech) where collecting audio in advance is unfeasi-
ble. A more recent study [17] proposed to use a DNN network that
is trained with reinforcement learning techniques to take streaming
audio input and forecast the adversarial perturbation. However, this
work only focused on launching untargeted attacks and does not
consider over-the-air attack either. In addition, the generated adver-
sarial perturbation still requires synchronization with the audio to
some extent, which is hard to achieve for streaming-speech attacks.

Universal audio adversarial attacks. To circumvent the time
constraint brought by individual adversarial attacks, several studies
proposed universal adversarial perturbation: an adversarial perturba-
tion that is expected to work with any input speech signal, causing
the model to make false prediction. Specifically, in speech recog-
nition tasks, existing studies use the iterative greedy algorithm
[32] to make arbitrary speech to be mis-classified [47] or falsely
transcribed [35]. In speaker recognition tasks, a recent study [51]
proposed to add audio-agnostic universal perturbations on arbitrary
enrolled speaker’s voice input in order to make the model identify
the speaker as any adversary-desired speaker label. To handle audio
inputs with varying audio length during optimization, Xie et al.
[51] proposed to use repeated copies of a universal noise pattern to
construct the adversarial perturbation, which is then cropped to fit
the length of the given audio at test time. However, the effective-
ness of this attack still relies on the synchronization between the
adversarial perturbation and the audio input, which is achieved by
first mixing the two signals into a single audio adversarial example
and then testing the model on the generated single-channel audio.
Thus, this is not feasible when launching streaming-speech attacks
in practice. In summary, all the aforementioned universal attacks
assume that the universal perturbation should be perfectly aligned
with all the input audio signals. This essentially requires the ad-
versary to have the knowledge of the exact timestamp to launch
the attack. Moreover, to accommodate the adversarial perturbation,
the input signal needs to be tailored to match the length of the
perturbation. These strict temporal constraints have prevented the
attack from being effectively launched in many practical attack
scenarios.

Over-the-air audio adversarial attacks. Most existing audio
adversarial attacks are based on digital domain assumption, i.e.,
feeding adversarial examples to the model directly. They are most
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likely to lose their effectiveness after practical over-the-air play-
back due to the accompanying audio distortions (e.g., attenua-
tion, multi-path effect, and ambient noises). Although several stud-
ies [2, 11, 54, 55] evaluated the performance of audio adversarial
attacks via over-the-air propagation, the real-world distortion fac-
tors were not thoroughly investigated in the adversarial example
generation process, leaving the practicality still very limited. To
address this issue, room impulse response (RIR) was integrated
[31, 52] to increase the robustness of the generated audio adver-
sarial examples. Moreover, a recent study [12] showed that the
transmission range can be further extended using domain adaption
algorithms. Although these studies successfully achieved physical
attacks, they still require prior knowledge of the input speech sig-
nal. The input signal also needs to be mixed with the well-aligned
adversarial perturbation before being played by a loudspeaker to en-
sure synchronization. They cannot work in the scenario where the
adversary wants to inject adversarial perturbations on live human
speech to deceive intelligent audio systems.

Our solution. Unlike existing studies, to the best of our knowl-
edge, we are the first to launch a targeted audio adversarial attack in
an audio-agnostic and synchronization-free manner. The generated
universal adversarial perturbations can be added to any part of
arbitrary speech signal (e.g., streaming speech), forcing the DNN
model to output the adversary-desired label. This is different from
the existing attacks that require the added adversarial perturbation
to be of the same duration as the input audio as we only inject
a very short adversarial perturbation (e.g., ~0.5 seconds) without
the need of synchronization. These properties can largely extend
our possible attack scenarios, which makes attacking live-human’s
voice inputs feasible.

3 BACKGROUND
3.1 Problem Formalization
An intelligent audio system (e.g., speaker or speech command
recognition) can be modeled as a function f (·) which takes an au-
dio input waveform x ∈ [−1, 1]n of n samples and outputs the
probability score P = [p0,p1, ...,pm−1], where pi ∈ [0, 1], and∑m−1
i=0 pi = 1 for a set of m classes. The audio input will be rec-

ognized by the model as the class with the highest probability
score (i.e., ypred = arдmax

(
f (x)

)
). The adversarial objective is to

construct an audio adversarial example x ′ ∈ [−1, 1]n by adding
a perturbation δ to the original audio input x with the following
properties:

Subsecond Perturbation. Instead of using a perturbation with
the same duration of the audio input as is used in existing studies
(e.g., [10, 12, 31, 38, 52]), we added a much shorter perturbation
δ ∈ [−1, 1]l , where l ≪ n, to make it sound more inconspicuous.

Targeted.By introducing the adversarial perturbation, the recog-
nition result can be changed from the true label y to the adversary-
desired target labelyt , namely,arдmax

(
f (x)

)
= y butarдmax

(
f (x ′)

)
=

yt , where yt , y.
Synchronization-free. When launching the attack in a real-

world scenario, such as injecting adversarial perturbation to the
streaming speech input, it’s impossible to add the perturbation
at a particular point of the streaming speech. In other words, the
synchronization between the adversarial perturbation and the audio

input cannot be guaranteed, and there usually exists a time delay τ
between the two signals. Therefore, the adversarial perturbation
signal δ [t], as a function of time t , needs to be applicable at any
time during the audio input playback regardless of the time delay:
arдmax

(
f (x[t] + δ [t − τ ])

)
= yt , where τ ∈ [0,n − l].

Universal. In most practical scenarios, observing the audio in-
put in advance is not plausible. Therefore, the constructed adversar-
ial perturbation is required to be effective on arbitrary audio input
(e.g., streaming speech).

Unnoticeable. The distortion introduced by the added adver-
sarial perturbation δ should be relatively small to make the attack
unnoticeable to human. As the duration of the generated perturba-
tion is very short, we deliberately make it sound like environmental
sound (e.g., bird singing, car horns, or HVAC noises) to further hide
itself while being played back over the air.

Robust for Over-the-air Attack. In order to launch a physical
attack, the adversarial perturbation should be robust enough to
survive real-world distortions brought by physical playbacks such
as reverberations and ambient noises.

3.2 Threat Model
The aforementioned properties enable the proposed attack to be
launched in a broad range of real-world scenarios. Unlike existing
studies that require to play the well-crafted adversarial example (i.e.,
the original speech mixed with the adversarial perturbations), in
this paper, we circumvent all the three major limitations described
in Section 1 and consider a more common and serious live-speech-
involved scenario where an adversary seeks to launch the attack
by only playing the constructed adversarial perturbation. The con-
structed perturbation is audio-agnostic and does not need to be
synchronized with the audio input, which largely extends its poten-
tial attack functionality. Additionally, the length of the perturbation
is in a subsecond level and is made to sound like environmental
sounds (e.g., phone’s notification sound), making the whole attack
process inconspicuous to people.

Possible Attack Scenarios. Our attack is applicable to the
static-speech attack scenario (Figure 1(a)), where the adversary needs
to create the adversarial example (i.e., the audio input mixed with
the adversarial perturbation) and then play it back through a loud-
speaker. In this scenario, the adversarial example could be played
inconspicuously by the adversary to make the intelligent audio sys-
tems inadvertently recognize and obey the adversary-desired inten-
tion. For instance, the speaker recognitionmodule could be fooled to
mistakenly recognize that the speech was uttered by an adversary-
desired speaker. The speech command recognition module can also
be controlled to execute the mistakenly recognized malicious com-
mand. More importantly, the proposed universal, synchronization-
free, and targeted adversarial attack makes the streaming-speech
attack scenario (Figure 1(b)) feasible. In this scenario, by playing
the well-crafted universal adversarial perturbation through a loud-
speaker, the adversary can compromise the intelligent audio system
while interacting with an actual person. Similarly, the perturbation
stealthily played by the loudspeaker can make either speaker recog-
nition or speech command recognition modules mistakenly recog-
nize the streaming audio input as the adversary-desired speaker or
malicious command respectively. This constructed perturbation is
very short (subsecond level) and sounds like environmental sounds,

Session 4B: Physical Attacks  CCS '20, November 9–13, 2020, Virtual Event, USA

1124



which can be periodically played by a nearby loudspeaker (smart
TV loudspeaker, in-vehicle/in-ceiling/on-wall loudspeakers) with-
out raising the victim’s suspicion. It can also be embedded in the
audio tracks of regular media (e.g., Youtube videos, radios or TVs),
potentially deceiving all the intelligent audio systems exposed to
the media.

Challenges of Adversary. Due to the inherent sequence order
and time-varying behavior of live speech, launching such an attack
in the streaming-speech attack scenario poses several challenges to
the adversary: (1) Independence of Audio Input. In the streaming-
speech scenario, the adversary cannot anticipate the upcoming
audio from the actual speaker (i.e., each speech is unique and will be
only uttered once), which prohibits the adversary from optimizing
the adversarial perturbation for specific audio signal in advance.
This requires the adversary to generate a universal adversarial
perturbation that can remain effective on arbitrary audio inputs
from the user. (2) Independence of Emission Time. The adversary
has no prior knowledge on the exact time when the speech will be
uttered. As a result, the generated adversarial perturbation needs to
have synchronization-free properties, meaning that the adversarial
perturbation should remain effective regardless of the emission
time during the interaction between the user and the system.

Adversary’s Capability. The attack workflow of most existing
studies (e.g., [12, 31, 52, 55]) are two-fold: first, calculate the adver-
sarial perturbation δ for a given audio input x and synchronously
apply the adversarial perturbation to get the adversarial example
x ′ = x+δ ; second, play the prefabricated audio adversarial example
through a loudspeaker. However, in our proposed attack, we assume
that the adversary has no control over the streaming audio input x
in terms of speech content and emission time. Moreover, the adver-
sary can have some prior knowledge of the possible environmental
sounds (e.g., bird singing, car horns, or HVAC noises) of the target
intelligent system so as to make the adversarial perturbation more
difficult to be noticed by people. In addition, to craft the adversarial
perturbation, we assume that the adversary has knowledge over
the architecture and the parameters of the model (i.e., a white-box
setting), as is used in most previous studies (e.g., [10, 12, 31, 38, 52]).

3.3 Target Models
Speaker RecognitionModel. In this work, we used X-vectors sys-
tem [44] as our target speaker recognition model, which is the state-
of-the-art text-independent DNN-based model and has been used
as baseline in several follow-up studies (e.g., [43, 50, 56]). Specifi-
cally, X-vectors system is composed of three building blocks: Mel-
frequency cepstral coefficients (MFCC) feature extraction, DNN
embedding model, and the probabilistic linear discriminant analy-
sis (PLDA) module. The DNN embedding model is structured by
stacking five time-delayed [36] layers, a statistic pooling layer and
two affine layers. The DNN embedding model is pre-trained in an
end-to-end manner with a categorical cross entropy loss, and a
separately trained PLDA classifier is used to calculate embedding
score. In our X-vectors implementation, we used the pre-trained
embedding model provided in the Kaldi toolkit [37] and used the
first 10 speakers (3 males and 7 females) in the VCTK corpus dataset
[48] as the enrolled speakers. The detailed information about each
speaker is shown in Table 5 in Appendix. Each speaker has about
400 utterances recorded at 48 kHz that were split into training and

testing sets with a ratio of 4 to 1, with each audio being cropped to
1.75 s. After enrollment, the baseline speaker recognition accuracy
on the testing set achieves 97.2%.

Speech Command Recognition Model. The target speech
command recognition model we used is an efficient and light-
weight keyword spotting model based on convolutional neural
networks [39]. This model has been used as the target model for
many existing attacks (e.g., [3, 17, 47]). Specifically, we used Tensor-
flow’s [1] official implementation2, which is trained on the voice
command dataset [49] to classify 10 speech commands: “yes”, “no”,
“up”, “down”, “left”, “right”, “on”, “off”, “stop”, and “go”. The dataset
contains a total number of 46, 278 recordings of 1 s sampled at 16
kHz, 80% of which is used for training. After training, the baseline
command recognition accuracy on the remaining testing samples
is able to achieve 89.0%.

4 DESIGN OF ADVPULSE
4.1 Synchronization-free Subsecond Targeted

Adversarial Perturbation
4.1.1 Feasibility of Subsecond Adversarial Perturbation. Conven-
tionally, the problem with crafting a targeted audio adversarial
perturbation is based on how to modify each data sample of the
audio input signal to make the intelligent audio model recognize it
as the target class [10]. Explicitly, given an audio input x ∈ [−1, 1]n
and the target labelyt , the adversary can solve the following formu-
lation to obtain the targeted adversarial perturbation δ ∈ [−1, 1]n :

minimize dBx (δ ),

subject to arдmax
(
f (x + δ )

)
= yt ; (1)

x + δ ∈ [−1, 1]n,

where dBx (δ ) = dB(δ )−dB(x) and it is used to measure the relative
loudness of the perturbation comparing to the audio input. This
can be achieved by minimizing the following objective function (a
relaxation of Equation 1):

minimize L
(
f (x + δ ),yt

)
+ α · | |δ | |2, (2)

subject to | |δ | |2 ≤ ϵ,

where L
(
f (x +δ ),yt

)
is the loss function representing the distance

between the model output of the adversarial example x + δ and
the target label yt , α is the scaling coefficient, | | · | |2 denotes the L2
norm, and ϵ controls the upper bound of the perturbation.

However, the requirement of modifying the entire audio natu-
rally prohibits synchronization-free. Since the audio input x and
the adversarial perturbation δ are required to have the same length
and if δ is delayed by time τ , a segment of δ with length τ will be
no longer acting on x . To launch a synchronization-free adversar-
ial attack on intelligent audio systems, we thus need to first solve
this question: Is it possible to only modify part of the input signal,
desirably a short segment, to fool the model?

Commonly, intelligent audio systems process speech signals
into frames, with each frame being handled by the DNN model
separately (e.g., the time-delayed neural network structure used

2https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/
speech_commands
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Figure 3: Illustration of adding a subsecond adversarial per-
turbation on the audio input, causing the model to mistak-
enly recognize the speaker (Spk-1) as the target (Spk-8): (a)
adding the perturbation on the speech part; and (b) adding
the perturbation on the non-speech part.

in speaker recognition or the convolution neural network struc-
ture used in speech command recognition). However, the extracted
feature-map of each frame is usually aggregated via a statistic pool-
ing layer or a fully-connected layer before feeding it to the classifier
or softmax layer where the final prediction is made. Therefore, by
adding adversarial perturbation to only part of the speech signal,
the adversary could influence the feature-map extracted from the
corresponding speech frames and in turn potentially affect the final
recognition result.

To further verify the feasibility of adding a short segment of
adversarial perturbation to fool the model, we conducted a prelimi-
nary experiment on the speaker recognition system (i.e., X-vectors
system [44]) using 10 enrolled speakers of the VCTK corpus dataset
[48]. Then we solved the optimal adversarial perturbation through
the same optimization process formulated in Equation 2, where
we use the categorical cross entropy as the loss function. In this
experiment, as shown in Figure 3, we intentionally generate two
adversarial perturbations acting on the speech-part and non-speech-
part of the audio input respectively, to force the model recognize
Spk-1 (i.e., the actual label of the audio input) as the target label Spk-
8. The added adversarial perturbation is only about 0.16 seconds
and can be applied to either speech-part signals or non-speech-part
signals (i.e., natural pauses between words). The initial success of
this attack shows the potential of synchronization-free adversarial
perturbation: adding a very short perturbation regardless of its
position on the audio input to fool the model.
4.1.2 Subsecond Synchronization-free Adversarial Perturbation Gen-
eration. With the inherent temporal constraint bypassed, we now
discuss how to generate a subsecond audio adversarial perturba-
tion δ ∈ [−1, 1]l (l ≪ n) that is robust to various unsynchronized
conditions. Inspired by the Expectation Over Transformation (EOT)
technique [6] proposed for synthesizing robust visual adversarial
examples, we incorporate the time shifting caused under unsyn-
chronized conditions into the adversarial perturbation generation
process. Instead of directly solving the adversarial perturbation
acting at a specific timestamp, we seek to minimize the expected
effective loss when the perturbation is shifted by a delay of τ , where
τ obeys the uniform distribution between the time interval 0 and
n − l . Therefore, Equation 2 would become:
minimize E

τ∼U (0,n−l )

[
L
(
f
(
x + Shi f t(δ , τ )

)
,yt

)
+ α · | |δ | |2

]
, (3)

where Shi f t(δ , τ ) shifts the adversarial perturbation δ by time τ . To
maximize the degree of synchronization-free, we sample random

time delays with a step size of 1 digital sample (i.e., the smallest
unit for time measurement in audio). Through this process, the
adversarial perturbation will learn to produce a generic acoustic
feature characterizing the target class to fool the model regardless
of timing conditions. In other words, the adversarial perturbation
can be injected anywhere in the streaming audio input for deceiving
intelligent audio systems, which is the essential requirement for
streaming-speech attack scenario.

4.2 Universal Audio Adversarial Perturbation
In the practical steaming-speech attack scenario, prior knowledge
on the audio input is usually inaccessible. We therefore need to
further circumvent the constraint on the prior knowledge of audio
input to enable the attack to be launched in a real-time manner.

Our goal is to find a universal subsecond adversarial perturbation
δ ∈ [−1, 1]l computed from a relatively small set of training data
samples to force the model to recognize arbitrary new audio input
(e.g., streaming audio input) as the target label with high probability.
Let µ denote the distribution of the training data samples, which are
a set of utterances spoken by the actual speaker for attacking speaker
recognition systems or a set of utterances of the actual command
for attacking speech command classification systems. We thus aim
to find a universal perturbation to fool the model on almost all the
audio inputs sampled from µ and alter the classification result to the
desired target class with a high probability (i.e.,∀x ∼ µ, P

(
f (x+δ ) =

yt
)
→ 1). It worth noting that, unlike existing untargeted universal

attacks [35, 47] where the goal is to fool the classifier to make false
prediction (i.e., ∀x ∼ µ, P

(
f (x +δ ) , f (x)

)
→ 1), we seek to launch

a targeted universal attack, which allows the adversary to pick the
target class that they desire. We believe this is a more harmful type
of attack as it offers the adversary the ability to control the attack
outcome (e.g., making their voice to be recognized as a specific
speaker with access privilege).

To coin such an attack, we used a penalty-based method to find
the universal adversarial perturbation by optimizing the following
expectation function over a set of training data samples sampled
from the distribution µ:
minimize E

x∼µ ,τ∼U (0,n−l )

[
L
(
f
(
x+Shi f t(δ , τ )

)
,yt

)
+α · | |δ | |2

]
. (4)

Let D = {(x1,y1), ..., (xk ,yk )} be a set of training data sampled
from µ. To approximate the true data distribution with its sample
distribution, we iterate through each data sample to update the
adversarial perturbation δ by applying gradients calculated from
Equation 3. The process is repeated for several epochs until the
desired attack success rate is reached.

To ensure the validity of the audio produced from the above pro-
cess, we need to enforce a box constraint on the output adversarial
perturbation as well as the adversarial example: δ ∈ [−1, 1]l , x ′ =
x + δ ∈ [−1, 1]n . This can be achieved through projected gradient
descent, which clips the value of the audio after each iteration to be
within the set range. However, this could yield non-optimal results
in complicated update steps [9], especially in our case where multi-
level clipping is needed. To mitigate this issue, we introduce a new
variable z, where δ = tanh(z). This changes the box-constrained
optimization on δ to unconstrained optimization on z. The pseu-
docode of the proposed algorithm is described in Algorithm 1,
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Algorithm 1 Universal and Synchronization-free Adversarial Per-
turbation Generation (SGD is used for simplicity)
Input: Data samples D = {(x1, y1), ..., (xk , yk )}, target model f (·), de-

sired target class yt , hyperparameters α , β
Output: Universal and Synchronization-free Adversarial Perturbation δ
1: Randomly initialize z ← [0, 1]l
2: for number of epochs do
3: τ ← U (0, n − l ) ▷ Sample random time delay
4: for each data sample (xi , yi ) ∈ D do
5: δ ← tanh(z) ▷ Get constrained audio perturbation
6: δ ← Shif t (δ , τ ) ▷ Time shifting
7: x ′ ← clip(x + δ , [−1, 1]) ▷ Craft adversarial example
8: Ltotal ← L

(
f (x ′), yt

)
+ α · | |δ | |2 ▷ Compute total

loss via Equation 3
9: z ← z − β · ∂Ltotal∂z ▷ Update perturbation via z
10: end for
11: end for

where stochastic gradient descent (SGD) [27] is used for simplicity.
In practice, this method could work with other gradient-based op-
timization algorithms, such as RMSProp [18], Adam [28], Nadam
[15], or AdaGuard [16]. We empirically choose to use Adam for
faster convergence.

4.3 Environmental Sound Mimicking
To further make the attack less suspicious, we tailored the gener-
ated adversarial perturbation according to environmental sounds.
Specifically, the adversary can craft adversarial perturbation to
sound like any situational sound that would normally appear in
the environment (e.g., bird singing, car horns, or HVAC nosies). For
a chosen environmental sound template δ̂ , we introduce another
term to Equation 4 to penalize the shape difference between the
adversarial perturbation and the sound template:

minimize E
x∼µ ,τ∼U (0,n−l )

[
L
(
f
(
x + Shi f t(δ , τ )

)
,yt

)
+ α · | |δ | |2 + γ · dist(δ , δ̂ )

]
,

(5)

where dist(δ , δ̂ ) denotes the measured distance between the two
audio signal according to a chosen distance metric. As shown in Ap-
pendix A.3, after comparing 4 different metrics, we chose to use the
L2 distance between the two time-series signals for environmental
sound mimicking.

4.4 Robust Adversarial Perturbation for
Over-the-air Attack

In practice, the crafted adversarial perturbation played by a loud-
speaker will experience heavy distortions incurred by signal atten-
uation, multi-path effect, and ambient noises when propagating
over the air. Such an inevitable audio distortion would make the
perturbation lose its effectiveness, with a high possibility. In this
subsection, we enhance the robustness of the generated adversarial
perturbation to enable physical over-the-air attacks by incorporat-
ing the effects of speaker & microphone limitation, absorption and
reverberation and ambient noise into the adversarial perturbation
generation process.

4.4.1 Using Band-pass Filter to Cope with Speaker & Microphone
Limitations. Audio devices such as loudspeakers and microphones
are normally designed to work in the human audible frequency
range (e.g., 20Hz to 20kHz). However, due to hardware limitations,
most loudspeakers and microphones do not respond to these fre-
quencies uniformly, which would cause the relative amplification
in some frequency ranges and attenuation in others, in turn affect-
ing the performance of the attack. For instance, we measure the
frequency response by playing a chirp signal ranging from 2Hz to
20kHz through the Bose Companion 2 speakers and recording from
an omni-directional microphone as shown in Appendix Figure 13.
We can observe a clear attenuation in lower frequencies (i.e., below
50Hz). To mitigate this effect, we imposed a band-pass filter during
the adversarial perturbation generation process as a constrain to
limit the adversarial perturbation to be in the valid frequency range:

minimize E
x∼µ ,τ∼U (0,n−l )

[
L
(
f (x̂),yt

)
+ α · | |δ | |2 + γ · dist(δ , δ̂ )

]
,

(6)

where x̂ = x + BPF
50∼8000Hz

(
Shi f t(δ , τ )

)
and BPF

50∼8000Hz
denotes the

band-pass filter operation. We chose 8kHz as the upper cutoff fre-
quency because it is the Nyquist frequency of 16kHz sampling rate,
which is commonly used in intelligent audio systems (e.g., Google
Assistant SDK [42]).
4.4.2 Using Room Impulse Response to Cope with Absorption and
Reverberation. During the over-the-air propagation, the surround-
ing environment will lead to absorption and reverberation, causing
the received audio signal to be very different from the original trans-
mitted signal. The room impulse response (RIR) models the transfer
function between the sound source and the received sound at the
microphone end, thus it can be used to emulate the over-the-air
distortions in the adversarial perturbation optimization process to
enhance the attack’s robustness. The RIR can vary largely according
to different room layouts, the position of the sound source and the
microphone, and the absorbent nature of each reflective surfaces.
Thus, we use a group of real RIRs collected in various environments
to improve the robustness of the generated adversarial perturbation
regardless of the launching condition and environment. Specifically,
we utilized the REVERB challenge database [29], the RWCP sound
scene database [34], and the Aachen impulse response database [26],
resulting in a total number of 218 physically measured RIRs under
different room layout (e.g., small, medium, large room). Through
integrating these RIRs, Equation 6 becomes:

minimize E
x∼µ ,τ∼U (0,n−l ),h∼H

[
L
(
f (x̂),yt

)
+ α · | |δ | |2

+ γ · dist(δ , δ̂ )
]
,

(7)

where x̂ = x + BPF
50∼8000Hz

(
Shi f t(δ , τ )

)
⊗h, and h is the RIR sampled

from the collected RIR distribution H . It’s worth noting that if the
adversary can anticipate the layout of the attacking environment
(e.g., rough room size) where the attack would be launched, the
adversary can further improve the attack performance by narrow-
ing down the available RIRs to a specific subset that is specifically
collected to reflect the attack environment.
4.4.3 Mitigating the Effect of Ambient Noise. In practice, ambient
noise is inevitable during recording and is highly variable, rang-
ing from continuous environmental white/pink noise (e.g., traffic
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Figure 4: Performance of the digital attack on the speaker
recognition model.

noise, rain sound, engine noise and air conditioning noise) to sud-
den sounds (e.g., phone ring, extraneous speech). Taking this into
account, we utilized a set of collected ambient noise and randomly
sampled an individual noise at each optimization step to solve:
minimize E

x∼µ ,τ∼U (0,n−l ),h∼H ,w∼W

[
L
(
f (x̂),yt

)
+ α · | |δ | |2

+ γ · dist(δ , δ̂ )
]
,

(8)

where x̂ = x + BPF
50∼8000Hz

(
Shi f t(δ , τ )

)
⊗ h +w andw is the ambient

noise sampled from the noise datasetW . Specifically, we use 92
isotropic noise samples collected in different room layouts (e.g.,
small, medium, large) from the RWCP sound scene database [34]
as our noise dataset. Similarly to RIR, instead of using a generic
dataset, a sophisticated adversary can gather his own customized
noise dataset for a specific attack scenario (e.g., living room, office,
airport, and mall) to further improve the attack performance.

5 EVALUATION OF DIGITAL ATTACK
5.1 Experimental Methodology
Adversarial PerturbationGeneration.We implementedAdvPulse
on the Tensorflow [1] platform and generated digital adversarial
perturbations according to Equation 5 using an NVIDIA 2080Ti
GPU. As for the attack configuration, we set α = 0.01, β = 0.001,
γ = 0.01, and chose the adversarial perturbation duration to be 0.5
seconds. The impact of the perturbation durations on the attack
performance is studied in Section 5.3. The total number of available
audio samples per class for speaker recognition model and speech
command recognition model are 47 and 100, respectively. For each
class, we split the data into training and testing sets with a ratio of
4 to 1. We used a segment of bird singing, as shown in Figure 14, as
the environmental sound template because this resembles phone’s
notification sound (e.g., Twitter’s notification sound), and therefore
can be used to help to launch the attack in various environments
without alerting the victim.

Attack Test Datasets. Our two target models and their data
settings are presented in Section 3.3, and each model has ten classes.
For each model, we ran our attack to craft a specific adversarial
perturbation for each actual-target label pair, resulting in a total
number of 90 subsecond adversarial perturbations. To verify the
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Figure 5: Performance of the digital attack on the speech
command recognition model.

synchronization-free property of the generated adversarial per-
turbation, we varied the delay τ from 0 seconds to the maximum
possible value for each audio input (i.e., the difference between the
duration of the original speech and the adversarial perturbation)
with a step of 0.001 seconds and generated adversarial examples by
mixing each test utterance and the delayed perturbation. In total,
we generated a very large attack test dataset containing 1,125,000
and 900,000 adversarial examples (i.e., speech inputs mixed with de-
layed perturbations) for speaker recognition and speech command
recognition modules, respectively.

Evaluation Metrics. (1) Attack Success Rate: This represents
the number of succeeded attacks over the total number of attack
attempts. Since this is a targeted attack, we only reported a success
if the predicted class matches the desired target class. (2) Confusion
Matrix: Each row represents the actual class uttered by the speaker
and each column shows the target class it is classified as by the
system. Each cell in the matrix corresponds to the fraction of class
in the row that is classified as the class in the column. (3) Signal-to-
noise Ratio (SNR): The generated adversarial perturbation and the
original environmental sound template are compared using SNR:
SNR = 10loд10( PxPp ), where Px and Pp are the average power of the
signal and the perturbation, respectively. Larger SNR values indicate
that the adversarial perturbation is closer to the environmental
sound template and therefore harder to be noticed.

5.2 Attack Performance
Speaker Recognition Model. Figure 4 illustrates the detailed
class-wise evaluation result on the speaker recognition model.
Specifically, each cell shows the average attack success rate of
applying the adversarial perturbation on all testing audio samples
with varying delays. As we can see, AdvPulse can achieve a high
attack success rate on the speaker recognition model: only 6 out of
90 combinations have average attack success rates under 90%, with
the lowest attack success rate being 83.2%, and the overall average
attack success rate is 96.9%. The average SNR of all adversarial
perturbations is 8.3 dB.

Speech Command Recognition Model. Figure 5 shows the
class-wise result of the attack on the speech command recognition
model. Only 4 out of 90 combinations have attack success rates
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Figure 6: Attack success rate with different perturbation du-
ration.

below 90%, with the lowest being 86.1%, which occurs when at-
tempting to make all “stop” commands be mis-recognized as “on”.
The overall average attack success rate is 96.8%, and the average
SNR of all adversarial perturbations from all actual-target class
pairs is 13.7 dB.

These results show that our generated adversarial perturbation
has good generality over unseen data and do not require synchro-
nization, making it possible to attack streaming audio inputs (e.g.,
live human speech). Additionally, the calculated SNR shows that
the generated adversarial perturbation is very much close to our
situational environmental sound template, potentially concealing
the perturbation in the environment from being noticed.

5.3 Impact of Perturbation Duration
The choice of the adversarial perturbation duration is crucial. Short
durations make the attack more flexible and also less noticeable but
decrease performance, while long durations guarantee high attack
success rate but also place a stricter timing requirement. To study
this trade-off impact, we evaluated the attack with different dura-
tions of the adversarial perturbation (0.1 to 0.6 seconds with a step
of 0.02 seconds) for both speaker and speech command recognition
models. For each specific duration, we selected 20 test samples from
the same original class and applied iterative gradient descent to
generate adversarial perturbation by solving Equation 5. We then
added the perturbations with varying delays to the test samples.
Figure 6 shows the average success rate with various perturbation
durations. We can see that despite some random errors caused by
SGD, a clear trend can be observed where the attack success rate
increases drastically with the increase of the perturbation duration
and achieves high performance (over 90%) if the duration is greater
than 0.2 seconds. However, we conservatively chose to use 0.5
seconds as the default perturbation duration to guarantee a better
performance in practical over-the-air scenarios.

6 EVALUATION OF PHYSICAL
OVER-THE-AIR ATTACK

6.1 Experimental Methodology
Adversarial Perturbation Generation.We used the same attack
configuration as our digital attack presented in Section 5.1. Un-
like the digital attack that relies on Equation 5, to improve the
robustness of adversarial perturbations for over-the-air attack, we
generated subsecond (0.5 seconds) adversarial perturbations accord-
ing to Equation 8. The average SNRs of adversarial perturbations
generated for speaker and speech command recognition models are
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Figure 8: Illustration of the
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4.7 dB and 6.0 dB, respectively. It is worth noting that the adver-
sarial perturbations were trained on several generic RIR datasets
(i.e., the REVERB challenge database [29], the RWCP sound scene
database [34], the Aachen impulse response database [26]) and a
generic noise dataset (i.e., isotropic noise samples from the RWCP
sound scene database [34]) instead of a well-suited one for each
particular scenario. However, it’s possible to utilize a customized
RIR/noise dataset to further improve the attack performance under
certain scenarios (e.g., using engine noise dataset to improve the
performance in inside-vehicle scenarios).

Setup: Office and Apartment Scenarios. Figure 7 illustrates
the environmental setup in two in-door scenarios: an office and a
bedroom of an apartment. The office size is approximately 7.5 m ×
3.7 m and the main noise sources are the fans of multiple desktop
computers and AC. The apartment is about 4.3 m × 3.6 m and the
main ambient noises are distant speeches from neighbors and bird
singing outside of the window. The ambient noises of the office
and the bed room were 41.0 dBSPL and 38.8 dBSPL, respectively,
both of which were measured using a noise meter (i.e., RISEPRO
decibel meter). The office scenario (Figure 7(a)) has two setups: In
setup 1, the victim and the adversarial loudspeaker are located at
two adjacent desks on the same side of the office, where the target
intelligent audio system is placed at the center of the office. The
distances between the victim and the adversarial loudspeaker to the
intelligent audio system are 2.6 m and 2.7 m, respectively. Setup 2
depicts a scenario where the victim and the adversarial loudspeaker
are located at two different sides of the room, and their distances
to the intelligent audio system are 3.0 m and 2.6 m, respectively. In
the apartment setup (Figure 7(b)), the intelligent audio system is
placed on the shelf by the window, and the victim sits in a chair
near the intelligent audio system while the adversarial loudspeaker
is placed at the desk. The distances from the victim and the adver-
sarial loudspeaker to the system are 1.6 m and 2.7 m, respectively.
We used a TKGOU omnidirectional conference microphone as the
receiving device of the intelligent audio system. For better con-
trol and repeatability, the victim (participant) was asked to hold
a loudspeaker (i.e., Edifier R980T) for playing streaming speech
(i.e., victim speaker’s utterances or speech commands in our test
dataset) and the adversarial loudspeaker (i.e., Edifier R980T) was
used to play the generated adversarial perturbations with varying
delays, attempting to attack the system. The utterances played by
the loudspeaker held by the victim are not involved in the training
and played in a streaming manner, which is sufficient to evaluate
our attack in the streaming-speech scenario. We further demon-
strated the feasibility of attacking live human speech on intelligent
audio systems in Section 6.3.
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Table 1: Attack success rates in indoor scenarios under dif-
ferent setups.

Setup Speaker
Recognition

Speech Command
Recognition Ambient Noise Level

Office
(Setup 1) 82.7% (186/225) 91.1% (205/225) 41.0 dBSPL
Office

(Setup 2) 92.4% (208/225) 92.0% (207/225)

Apartment 92.9% (209/225) 86.7% (195/225) 38.8 dBSPL

Setup: Inside-vehicle Scenario. Figure 8 shows the setup for
inside-vehicle scenario in a 2013 Honda Civic Sedan. The perturba-
tion was played through car speakers and the speech was played
through a loudspeaker (i.e., Bose SoundLink Mini II) held at the
driver’s speaking position using a Y-adapter. We used a smartphone
(i.e., iPhone XS Max) as the receiving device of the intelligent audio
system, and measured the ambient noise leveling using a noise
meter (i.e., RISEPRO decibel meter). We evaluated our attack under
three states: (1) Engine Off : the car was parked with the electric
power on and the engine turned off, with an average ambient noise
level of 35.9 dBSPL (ranging from 34.0 to 37.5 dBSPL); (2) Engine
On (Idling): the car was parked with the engine turned on, with
an average ambient noise level of 42.8 dBSPL (ranging from 41.9
to 44.2 dBSPL); and (3) Engine On (Cruising): the car was cursing
with an average speed around 30 − 40 mph, and the main sources
of noise are engine noise, wind noise, and road noise. The average
ambient noise level was 64.7 dBSPL, with the maximum noise level
reaching 67.0 dBSPL.

EvaluationMetrics. (1) Attack Success Rate: The samemetric as
described in Section 5.1. (2) Baseline Accuracy: The system accuracy
of the Android implementation of the speech command recognition
model used in Section 6.3 to evaluate live human attack. It is the
ratio of correctly recognized speech commands over total number
of speech commands the user spoke.

6.2 Attack Performance
Indoor Scenarios. Table 1 shows the results of the indoor scenario.
For each model, we evaluated our attack in each setup by randomly
choosing 5 pairs of actual-target classes. For each pair, we ran-
domly selected 3 test audio samples from the actual class. During
the playback of each test audio sample, we played the generated
perturbation 15 times with uncontrolled varying delays. This gave
us a total number of 225 recordings for each model in each setup.
The perturbations were played at a similar volume of a regular
phone notification sound (50 − 55 dBSPL), which is much quieter
comparing to speech (∼ 60 dBSPL). As we can see from Table 1, our
attack can retain a high attack success rate in all the representative
indoor setups, with an average attack success rate of 89.3% against
speaker recognition systems and 89.9% against speech command
recognition systems.

Inside-vehicle Scenario. Table 2 presents the experiment re-
sults of the inside-vehicle scenario. In each vehicle state, we ran-
domly selected 5 pairs of the actual-target classes for each model.
For each pair, we randomly selected 1 test audio sample from the
actual class and played the generated perturbation 10 times with un-
controlled varying delays, resulting in a total number of 50 record-
ings for each model in each status. The perturbations were played
through built-in speakers at the same level of loudness of a regular

Table 2: Attack success rates in inside-vehicle scenario under
different statuses.

State Speaker
Recognition

Speech Command
Recognition Ambient Noise Level

Engine Off 96% (48/50) 100% (50/50) 35.9 (34.0 − 37.5) dBSPL
Engine On
(Idling) 96% (48/50) 98% (49/50) 42.8 (41.9 − 44.2) dBSPL

Engine On
(Cruising) 74% (37/50) 78% (39/50) 64.7 (62.8 − 67.0) dBSPL

Table 3: Attack success rates with different level of adversar-
ial perturbation loudness.
Adversarial Perturbation

Loudness (dBSPL)
45 50 55 60

Attack Success Rate 64% (32/50) 94% (47/50) 100% (50/50) 100% (50/50)

car radio (55 − 60 dBSPL), which is quieter than road noises (∼ 65
dBSPL). As shown in Table 2, our attack can achieve a high attack
success rate when the engine is turned off or idling (only failed 4
times against speaker recognition model and 1 time against speech
command recognition model out of 100 trials). This shows that
our attack is resilient to severe reverberation during playing the
adversarial example in the narrow cabin. Even when the vehicle is
cruising with a loud wind/road noise, our attack can still achieve a
relatively high success rate (over 74% against both systems).

6.3 Attacking Live Human Speech
Due to the strict dependency on speaker identity and the lack of
training data on the speaker recognition model, we only validated
our attack against live human speech on the speech command recog-
nition system. Specifically, we implemented an Android app of our
target speech recognition model based on Tensorflow Lite and in-
stalled it on a smartphone (i.e., Google Pixel). As shown in Figure 9,
we evaluated the live human attack in two scenarios: (1) Laptop:
The victim speaks into the smartphone while the adversarial pertur-
bation is played from a nearby laptop. This represents the scenario
where the adversary remotely launches the attack by broadcast-
ing adversarial perturbations through online media (e.g., Youtube
Channel). (2) Loudspeaker : The victim speaks into the smartphone
while the adversarial perturbation is played from a loudspeaker at
a distance of 1 m. This is possible when the adversary launches the
attack through an adversary-controlled loudspeaker (e.g., built-in
speakers of smart appliances) placed in the vicinity.

We recruited 4 participants to play the role of victim, 2 being
males (p-1 & p-4) and 2 being females (p-2 & p-3). Each participant
was first asked to read out 3 arbitrary speech commands (10 times
for each) without playing the adversarial perturbation, which serves
as the baseline for the system. Then, each participant was asked
to say the same set of speech commands again (10 times for each)
in both scenarios with the adversarial perturbation playing in the
background. Figure 10 depicts the calculated baseline accuracy and
the attack success rate. As we can see, the system has a relatively
high accuracy when facing benign inputs, with an average baseline
accuracy of over 95%. Benefiting from the synchronization-free and
audio-agnostic adversarial perturbation optimization process, our
attack manged to reach an average accuracy of 98.7% (only failed 3
times out of a total number of 240 trails in these two scenarios).
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Figure 10: Results of attack-
ing live human speech.

6.4 Impact of Perturbation Loudness
We used the loudspeaker setup as shown in Figure 9 to study the
impact of adversarial perturbation loudness. The loudness of both
the adversarial perturbation and human speech were measured
using a noise meter (i.e., RISEPRO decibel meter) placed at the
smartphone’s position. We asked one participant (p-4) to read out
5 arbitrary speech commands, each for 10 times, while we played
the adversarial perturbation in the background with different loud-
ness by varying the volume of the loudspeaker. For reference, we
measured the ambient noise level in the quiet room to be around
41 − 43 dBSPL, and the sound pressure level of the victim’s voice to
be around 60 − 62 dBSPL. As shown in Table 3, the attack success
rate can reach 100% when the adversarial perturbation is played at
55 or 60 dBSPL. The attack success rate decreases slightly when the
volume is tuned down to 50 dBSPL, and is further reduced when
the adversarial perturbation is played at a very small volume (64%
at 45 dBSPL that is similar to the ambient noise). Considering the
ultra-short duration of the adversarial perturbation and its high
similarity with the situational environmental sound, our attack can
be launched using a low volume (comparable to the ambient noise)
to comprise systems without raising any suspicion. In addition to
the perturbation loudness, we also studied the impact of attack
distance with details presented in Appendix A.4.

7 DEFENSES
7.1 Performance Under Defense Settings
Some prior studies [14, 53, 54] have pointed out that applying
audio pre-processing techniques before the recognition process to
reduce the fidelity of the signal can potentially make the fragile
adversarial perturbation lose its effectiveness. We evaluated our
attack against four commonly-used defenses: (1) Low-pass Filtering:
Apply a Butterworth low-pass filter with various cutoff frequencies;
(2) Quantization (used in prior work [53]): Round the 16-bit signed
integer amplitude values to its nearest integer multiple of q, where
q is set to be 256, 512 and 1024; (3) MP3 Compression (used in prior
work [14]): Perform MP3 compression on the adversarial example
prior to recognition; and (4) Down-sampling (used in prior work
[53, 54]): Down-sample the adversarial example to a lower sampling
rate (e.g., 2, 4, and 8kHz) and then perform signal recovery3.

Specifically, we used a set of clean audio samples from each
class to generate adversarial examples targeting the remaining
9 classes, by adding adversarial perturbations with random time
delay. This results in a total number of 154 clean audio samples
and 1, 386 adversarial examples for the speaker recognition system,
and 200 clean audio samples and 1, 800 adversarial examples for
3The sampling rates of audio inputs used by the speaker recognition system and the
speech command recognition system are 48kHz and 16kHz , respectively.

the speech recognition system respectively. From Table 4, we can
observe that these defense techniques barely impact the adversarial
examples generated for the speech recognition system: the lowest
attack success rate occurred when quantization with q = 1024
is applied, which is 96.8%, while the system accuracy on benign
inputs is decreased to 74.0%. While for the speaker recognition
system, when applying low-pass filtering and quantization, we
observe that the system accuracy on benign inputs decreases faster
than the attack success rate of the adversarial examples, rendering
these defenses impractical. Although MP3 compression and down-
sampling are shown to be relatively effective on the adversarial
examples, they also significantly affect the recognition accuracy
of benign inputs. This result demonstrated that simple audio pre-
processing techniques either are ineffective or will largely degrade
the system performance with normal audio inputs.

7.2 More Advanced Adaptive Attacks
A sophisticated adversary can further design adaptive attacks against
these input-transformation-based defenses by incorporating the
corresponding transformation into the optimization process. For
instance, to bypass low-pass-filtering-based defenses, the adversary
can simply lower the frequency upper bound of the band-pass filter
in Equation 6. For the transformations that are not smooth or not
directly differentiable, the adversary can use backward pass differ-
entiable approximation (BPDA) [5] to get approximated gradients.
For example, to bypass MP3 compression, at each optimization
step in Algorithm 1, the adversary can update the perturbation δ
according to gradients calculated on L

(
f (MP3(x ′)),yt

)
.

8 DISCUSSION
8.1 Attacking ASR Systems with Long Inputs
Previously we evaluated our attack on speaker recognition sys-
tem with input speech containing short sentences (∼ 5 words) and
speech command recognition system for recognizing single-word
commands. In this subsection, we discuss the possibility of extend-
ing our attack to more sophisticated automatic speech recognition
(ASR) systems with the ability to transcribe long sentences.

Temporal Dependency of Sequence-to-sequence Speech
Recognition System. Speaker and speech command recognition
models (our target systems) are essentially sequence-to-vector mod-
els, which usually utilize a temporal pooling layer to aggregate the
extracted frame-level features across the time dimension so that a
decision can be made with information collected from the entire
speech. Differently, ASR systems leverage sequence-to-sequence
models (e.g., recurrent neural network (RNN)) to transcribe a speech
signal into corresponding text, where the output relies on not only
the input at the current time step, but also the hidden state which
encodes the representations learned from previous inputs. This
structural difference should be taken into account when designing
the attack against these two types of models. For instance, as shown
in Figure 11, by injecting a short adversarial perturbation at arbi-
trary frames an adversary can impact the final recognition result of
speaker recognition systems directly. While, for ASR systems, the
influence of short perturbation injected at one frame is brought to
its subsequent frames through the altered hidden states. Moreover,
to take into account articular and linguistic dependencies, modern
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Table 4: Attack performance in the presence of commonly-used defenses.
Low-pass Filtering Quantization Down-samplingNo Defense 2 kHz 4 kHz 8 kHz 256 512 1024 Mp3 Compression 8 kHz 16 kHz

Accuracy on Benign Inputs 98.0% 51.9% 72.0% 93.5% 77.9% 43.5% 18.2% 52.6% 11.7% 29.9%Speaker Recognition Systen Attack Success Rate 98.9% 80.8% 90.2% 94.6% 98.4% 96.0% 77.5% 26.3% 10.5% 21.0%
Accuracy on Benign Inputs 87.0% 87.5% 87.5% − 84.0% 83.0% 74.0% 88.0% 88.0% −Speech Command Recognition System Attack Success Rate 98.0% 98.0% 98.0% − 98.8% 98.7% 96.8% 98.0% 97.9% −

“kitchen lights off”Input Speech

ASR System

Recognition Result
Speaker 5

Input Speech

Speaker Recognition System

Recognition Result

Speaker 3

“unlock the door”

Figure 11: Structural difference between speaker recogni-
tion systemand automatic speech recognition system.Areas
marked red represent adversary-perturbed parts.

ASR systems utilize bidirectional models to correct the interpre-
tation of the current phoneme by looking at both past and future
phonemes, making it possible to add perturbation at one time step
and change the transcription of the entire sequence.

Attacking Long Inputs. To verify the feasibility of attacking
ASR systems with long input sentences, we used DeepSpeech [24]
as the target system with connectionist temporal classification
(CTC) loss [22] for our proof-of-concept experiments. Figure 12 (a)
showcases a scenario where the added perturbation only covers
the word “kitchen”, but is able to influence the transcription of
the subsequent words through changing hidden representations,
resulting in the whole command to be falsely recognized as “un-
lock the door”. During our experiments, we observed that it is hard
for the perturbation added at one point to penetrate even longer
audio inputs, with the effect decaying usually after 2 − 3 words.
However, according to Amazon4, the mostly frequently used voice
commands are usually only 2 − 4 words long, making it sufficient
to attack common voice commands in practice. For longer com-
mands, attacks are still feasible by injecting multiple perturbation
segments. For instance, in Figure 12 (b) we successfully made “turn
down the heat and start the music” to be recognized as “unlock
the door” by injecting two short perturbations. In our future work,
we will explore the effect of hidden states and input conditions at
varying time steps on the transcription results to further improve
the robustness and synchronization freedom of the attack.

8.2 Practical Deployment
Different from existing studies, our proposedAdvPusle enablesman-
in-the-middle attacks on smart audio systems, where an adversary
alters the user’s streaming speech on the fly. This opens up many
human-involved attack scenarios that are previously infeasible if
having following restrictions: (1) The system requires the user to
be present to enable its voice-interface (e.g., some systems may
come equipped with sensor-based liveness detection schemes); (2)
The process involves interactive audio inputs, making it hard for
an adversary to foresee the conversational content and craft adver-
sarial examples beforehand accordingly. For instance, interactive
4https://www.amazon.com/alexa-skills/b?ie=UTF8&node=13727921011
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Figure 12: Illustration of attacking ASR systems with short
perturbations.

voice response (IVR) systems used for telephone banking require
the user to interact with the system or a human representative
while passing the speaker verification process; (3) The scenario re-
quires to actively alter the recognition result of the victim’s speech.
For example, an adversary wants to make voice-controllable smart
vehicles do the opposite as the driver’s commands to potentially
cause severe damage. The enabled properties by AdvPusle would
be desirable to many more human-involved attack scenarios.

In our experiments, we chose to use bird singing and phone noti-
fication sound as the environmental sound template for illustration.
In practice, the perturbation can also be disguised as continuous
noises such as HVAC noise, car engine noise, or music, to be played
periodically. Additionally, the user might notice something suspi-
cious if the command is continued to be carried out incorrectly.
However, in most cases, the malicious command may have already
been executed and caused corresponding consequences (e.g., door
has been opened; vehicle has been steered to a wrong direction).

9 CONCLUSION
In this work, we proposed AdvPulse, a practical adversarial au-
dio attack against intelligent audio systems in the scenario where
the system takes streaming audio inputs (e.g., live human speech).
Unlike existing attacks that require the adversary to have prior
knowledge of the entire audio input, we generated input-agnostic
universal subsecond audio adversarial perturbations that can be
injected anywhere in the streaming audio input. We also deliber-
ately made it akin to environmental sounds to minimize suspicion
while launching the attack. Additionally, various sources of audio
distortions caused by physical playback are considered to improve
the robustness of the perturbations during over-the-air propagation.
Extensive experiments against both speaker and speech command
recognition models under various realistic scenarios demonstrated
the attack’s effectiveness.
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A APPENDIX
A.1 Speaker Information

Table 5: Information of each speaker.

Speaker ID Age Gender Accents Region
spk 0 225 23 F English Southern England
spk 1 226 22 M English Surrey
spk 2 227 38 M English Cumbria
spk 3 228 22 F English Southern England
spk 4 229 23 F English Southern England
spk 5 230 22 F English Stockton-on-tees
spk 6 231 23 F English Southern England
spk 7 232 23 M English Southern England
spk 8 233 23 F English Staffordshire
spk 9 234 22 F Scottish West Dumfries

A.2 Frequency Response
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A.3 Comparison of Distance Metrics
We performed a preliminary study to evaluate the quality of the
generated adversarial perturbation in terms of the similarity with
the environmental sound template using four distance metrics: (1)
Time Series: the L2 distance between the two time-series signals;
(2) DCT : the L2 distance between the discrete cosine transform of
the two signals; (3) STFT : the L2 distance between the short-time
Fourier transform of the two signals; and (4) MFCC: the L2 distance
between the extracted Mel-frequency cepstral coefficients. We ran-
domly initialized the audio perturbation (the random seed is set to
be the same between trials) and performed a 2000 epoch gradient
descent with a learning rate of 0.001 to minimize each distance. Fig-
ure 14 shows the spectrogram of the original environmental sound
template (bird singing) and the generated audio perturbation using
different distance metrics. As we can see, using Time Series, DCT
and STFT can all effectively produce the adversarial perturbation

that sounds similar to the environmental sound template, rendering
the attack inconspicuous. To shorten the training time5, we chose
to use Time Series as the distance metric.
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Figure 14: Spectrogram of the adversarial perturbations gen-
erated using different distance metrics to mimic environ-
mental sound.

A.4 Impact of Attack Distance
We used the setup shown in Figure 15 to study the impact of the
attack distance. As shown in the figure, one participant (p-4) is
asked to sit at one end of the table with a smartphone (i.e., Google
Pixel) and a noise meter (i.e., RISEPRO decibel meter) placed in
front of him, while the loudspeaker is placed at different distances
(i.e., 1 − 5m) with a fixed volume. We asked the participant to first
read out 5 arbitrary speech commands, 10 times each, without
playing adversarial perturbation, to serve as the baseline system
accuracy. Then the participant was asked to read out the same set
of speech commands (10 times for each) while the perturbation
was played from the loudspeaker placed at increasing distances
with its loudness decreasing correspondingly. For reference, we
measured the ambient noise to be around 46 dBSPL, the speech of
the participant to be around 74− 78 dBSPL, and the baseline system
accuracy to be 90%. Figure 16 shows the resulting attack success
rate and perturbation loudness measured by the noise meter. We
can see that our attack not only achieves a high attack success rate
in the close-distance scenario (e.g., 100% at 1m and 1.5m), but also
maintains a moderate accuracy under far-field settings with rela-
tively strong reverberations (e.g., 68% at 4.5m and 62% at 5m) and
low perturbation loudness that is comparable to the ambient noise
(e.g., 48.4 dBSPL at 5 m). This result demonstrated that by consider-
ing the effects of speaker and microphone limitation, absorption
and reverberation, and ambient noise, the over-the-air optimization
process can indeed provide robust adversarial perturbations.
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Figure 15: The dis-
tance study setup.
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Figure 16: Attack performance at
varying distances.

5The training time measured on a single NVIDIA GTX 2080Ti GPU: Time Series took
1.035s, DCT took 10.187s, STFT took 10.210s, and MFCC took 16.537s.

Session 4B: Physical Attacks  CCS '20, November 9–13, 2020, Virtual Event, USA

1134


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Problem Formalization
	3.2 Threat Model
	3.3 Target Models

	4 Design of AdvPulse
	4.1 Synchronization-free Subsecond Targeted Adversarial Perturbation
	4.2 Universal Audio Adversarial Perturbation
	4.3 Environmental Sound Mimicking
	4.4 Robust Adversarial Perturbation for Over-the-air Attack

	5 Evaluation of Digital Attack
	5.1 Experimental Methodology
	5.2 Attack Performance
	5.3 Impact of Perturbation Duration

	6 Evaluation of Physical Over-the-air Attack
	6.1 Experimental Methodology
	6.2 Attack Performance
	6.3 Attacking Live Human Speech
	6.4 Impact of Perturbation Loudness

	7 Defenses
	7.1 Performance Under Defense Settings
	7.2 More Advanced Adaptive Attacks

	8 Discussion
	8.1 Attacking ASR Systems with Long Inputs
	8.2 Practical Deployment

	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Speaker Information
	A.2 Frequency Response
	A.3 Comparison of Distance Metrics
	A.4 Impact of Attack Distance




