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Abstract—The increasing scale and complexity of deep neural
networks, coupled with heightened privacy concerns, has under-
scored the importance of developing techniques that align with
privacy regulations such as the GDPR and CCPA. These laws
mandate the “right to be forgotten”, which presents a significant
challenge in the context of Federated Learning (FL). FL models
trained collaboratively without sharing private data, necessitate
efficient unlearning methods that allow for the deletion of
specific data without retraining from scratch, which is both
computationally and communicatively demanding. This paper
introduces a novel framework named CONFUSE, designed to ad-
dress the multi-faceted challenges of machine unlearning within
FL by incorporating neuroscientific principles into a confusion-
based technique for memory degradation. This approach enables
targeted data erasure at various levels—instance, feature, and
client—without the need for knowledge distillation, thus preserv-
ing the model’s integrity and reducing the computational burden
on clients. We evaluate the effectiveness of our method using three
benchmark datasets, demonstrating its efficiency and adaptability
in FL environments, thereby ensuring compliance with privacy
laws and enhancing the model’s fairness and reliability.

Index Terms—federated learning, machine unlearning, feder-
ated unlearning, model confusion

I. INTRODUCTION
The advent of deep neural networks, with their expansive

architectures trained on vast datasets, has significantly ad-
vanced machine learning. However, as model sizes balloon and
datasets grow, privacy concerns escalate. These sophisticated
models are prone to memorizing training data details, posing
a stark privacy risk [1]. This memorization runs counter to
privacy laws like the GDPR [2] and CCPA [3], which uphold
an individual’s right to have personal data deleted — a concept
known as the “right to be forgotten”.

This tension between model performance and privacy rights
has catalyzed interest in machine unlearning, which aims to
methodically erase the imprint of specific data from mod-
els without degrading their utility [4]. Machine unlearning
emerges as a formidable task in the realm of Federated
Learning (FL), where multiple clients, including many IoT
edge devices with limited computational power, collabora-
tively train a model without sharing their private data [5].
The distributed essence of FL means techniques for machine
unlearning developed for centralized architectures cannot be
seamlessly adapted. A simplistic approach to federated un-
learning would be to retrain the model from the ground up
sans the data meant to be omitted. However, this method is

impractical in real-world FL scenarios due to the excessive
computational and communication demands it places on the
system, particularly on the edge and IoT devices. Thus, the
quest for efficient unlearning methodologies that align with the
distributed, collaborative nature of FL and the dynamic nature
of IoT data is not just a technical necessity but a pressing
compliance imperative.

Beyond compliance with the “right to be forgotten”, un-
learning in FL models serves an additional purpose: it allows
the system to adapt when training data may be compromised,
outdated, or biased over time. Given the decentralized nature
of FL and the diverse data contributions from multiple parties,
the potential for such data issues is not uncommon. Whether
it’s due to data poisoning attacks [6], [7], or the simple
progression of time rendering certain information less relevant,
the capability to selectively unlearn this information is invalu-
able. It bolsters the security, adaptability, and dependability
of FL systems. This proactive unlearning not only aligns
with privacy mandates but also underpins the fairness of the
FL system. By eliminating data that may skew the model,
unlearning ensures that decisions remain just and equitable
across all data points.

Recent studies on unlearning within Federated Learn-
ing (FL) systems have identified several limitations in the
scope and application of current unlearning methods. Existing
strategies predominantly focus on retraining-based unlearning
methods [4], [8], [9], which are often computationally in-
tensive, and model-revision-based methods [10]–[14]. Model-
revision-based methods mainly address client-level unlearn-
ing [10], [15], [16], where a client wants to withdraw com-
pletely from the federation and seeks to eliminate the impact
of all its local data on the global model. However, this
focus overlooks the more nuanced need for instance-level
unlearning, where multiple clients may only want to remove
the impact of specific data points from the global model.
Moreover, feature-level unlearning becomes essential when
addressing algorithmic biases that lead to unfair treatment of
underprivileged groups. By specifically targeting and unlearn-
ing biased features, the fairness and reliability of the FL model
can be substantially improved.

Additionally, the majority of contemporary unlearning
strategies employ knowledge distillation, where they use the
pre-unlearning model as a teacher to transfer retaining knowl-



edge to the post-unlearning model to preserve the model’s
knowledge [10]–[12], which imposes substantial computa-
tional burdens on the clients who may be an IoT device. Many
of these algorithms require access to clients’ historical model
updates or gradient information to improve efficiency — a
practice that is often not feasible within FL due to privacy
concerns. This restriction further complicates the process of
efficiently unlearning targeted data in FL scenarios.

In this paper, we address the practical challenges associ-
ated with unlearning in FL and propose a novel framework,
namely CONFUSE, for efficient unlearning at various levels
— instance, feature, and client. Our approach leverages neuro-
science theories on memory forgetting to develop a confusion-
based technique that intentionally obscures the model’s mem-
ory. This is achieved by pairing varied labels with similar
feature sets to confuse the model and diminish its recall of
the original samples. In addition, our approach avoids the
need for knowledge distillation and maintains the model’s
integrity post-unlearning by using a saliency-guided method.
This method decomposes the model into smaller components,
allowing for targeted updates that erase specific knowledge
without affecting other essential information retained by the
model. Our contributions to this work can be summarized as
follows:

• We introduce CONFUSE, a versatile framework designed
for the nuanced task of unlearning at multiple granu-
larities - individual instances, specific features, or entire
client datasets within the FL paradigm.

• Our unlearning process circumvents the traditional re-
liance on historical updates and gradients, utilizing a
confusion-induced method inspired by neuroscientific in-
sights into memory degradation, thus streamlining the
unlearning procedure.

• By employing a saliency-guided technique to decon-
struct the model into discrete segments, we ensure a
precise elimination of targeted knowledge, safeguarding
the model’s overall acuity and preventing the dilution of
unrelated, yet critical, retained information.

• We rigorously assess the efficacy of our method using
three benchmark machine learning datasets, demonstrat-
ing our approach is efficient and widely applicable within
the domain of FL.

II. RELATED WORK

Unlearning in FL is typically implemented through two
main strategies: retraining-based and model-revision-based
methods. The retraining-based approach necessitates extensive
retraining of the global model with client data, while model-
revision-based methods adjust the model using client-provided
parameter updates, sidestepping the need for retraining.

Retraining-based Unlearning: A considerable body of
research has focused on optimizing the retraining process
within federated unlearning frameworks. For instance, Liu et
al. [8] developed a rapid retraining algorithm that employs
first-order Taylor expansion and diagonal experience Fisher
Information Matrix (FIM) to reduce time overhead. Yuan et

al. [9] introduced a federated forgetting framework that enables
clients to request data deletions, prompting the server to retrain
the global model accordingly. Bourtoule et al. [4] proposed
the Sharded, Isolated, Sliced, and Aggregated (SISA) training
method, which minimizes computational costs by limiting the
scope of data points’ influence through data sharding and
slicing techniques.

Model-revision-based Unlearning: On the efficiency front,
several researchers have developed methods to enhance the
unlearning process in federated settings. Zhang et al. [17]
introduced a method to diminish client influence by using a
weighted sum of gradient residuals and Gaussian noise, main-
taining equivalence between unlearned and retrained models.
Liu et al. [13] improved unlearning speed and preserved model
accuracy by reconstructing models using server-stored param-
eter updates and a new calibration method for client updates.
Halimi et al. [15] and Wu et al. [16] employed a gradient-
based approach to forget data, using the gradient information
from the forgetting set. Additional efforts by Baumhauer et
al. [18], Thudi et al. [19], Izzo et al. [20] focused on opti-
mizing machine unlearning by developing methods that relax
effectiveness standards and improve gradient approximation.
Chourasia et al. [14] highlighted the importance of robustness
in data deletion, while Wu et al. [10] and Zhu et al. [12]
explored knowledge distillation to selectively remove data
from models, enhancing the unlearning process in federated
learning environments.

III. PRELIMINARIES

A. Federated Learning
Federated Learning (FL) is a decentralized approach to

machine learning that enables multiple edge devices, often
referred to as clients, to collaboratively train a shared global
model without sharing their individual datasets [5]. This
methodology helps maintain data privacy while reducing the
amount of data transmission required, addressing key concerns
in data-sensitive applications. Overall, FL aims to optimize the
global objective:

min
θg

f(θg) =
K∑

k=1

pkLk(θg), Lk = E(xi,yi)∈Dk [f(θg ;xi), yi]} (1)

where K is the number of participating clients, each with a
participation probability pk, Lk is the empirical loss for client
k with global model θg and E is the empirical error value.

In a typical FL scenario, each client utilizes its local data to
train a global model. Rather than exchanging or centralizing
the data, only the model parameters or gradients are shared
with a central server. One of the foundational algorithms
in this space is FedAvg [21], which aggregates these local
models into a global model. The aggregation process involves
computing a weighted average of the local models, denoted by
θt+1
g =

∑
k∈K

nk

n θtk, where θt+1
g represents the parameters of

the global model at iteration t + 1, θtk are the parameters of
the local model for client k, nk is the number of data points
at client k, and n is the total number of data points across
all clients. FedAvg has demonstrated its ability to effectively



converge even on non-IID (non-Independently and Identically
Distributed) data under certain conditions.

B. Federated Unlearning (FU)

Federated Unlearning (FU) has become an essential strategy
in FL, facilitating the removal of the influence of specific
knowledge (data points, data features, or broader data con-
cepts) from a pre-trained FL model without necessitating
complete retraining from scratch. This capability is particularly
crucial in federated environments where data privacy and
efficiency are paramount. The subset of knowledge designated
for removal is known as the forgetting set. The primary
goal of FU is to update a pre-trained FL model efficiently
and effectively so that its performance is comparable to that
achieved by full retraining, following the exclusion of the
forgetting set from the training set.

To illustrate, let D = {xi, yi}ni=1 represent the total training
dataset across all the clients comprising n data points, each
with inputs xi where xi is a collection of features gi ∈ G
and labels yi for a supervised learning scenario. Let Df ⊆ D
be the designated forgetting set. Df can contain samples from
multiple clients or specific clients depending on the application
scenario. In the case of feature-level unlearning, we consider
each sample in Df contains the related feature gi and the
label yi of the corresponding sample. The complement of Df ,
denoted by Dr = D \Df , is known as the remaining dataset.
Before federated unlearning, the global model, denoted by
θg , is trained on D using methodologies like empirical risk
minimization (ERM) in a federated manner. Retraining is
considered the gold standard in unlearning paradigm [13],
involving retraining the model parameters θg from scratch on
Dr. However, model retraining is computationally intensive,
presenting a significant challenge in federated settings where
resources and bandwidth are often limited. Consequently, the
central challenge in FU is to develop an unlearned model θu
from θg using Df and/or Dr that can accurately and efficiently
replace retraining.

IV. PROPOSED FRAMEWORK

To address the challenges encountered in FU, we draw
insights from cognitive neuroscience theories on memory
forgetting. Among these theories, our focus lies on the com-
petitive theory of forgetting [22], which posits that forgetting
occurs precisely because memories compete with each other
when triggered by the same retrieval cue. This competition
can lead to the suppression or inhibition of certain memories,
making it difficult to recall them when needed. This theory
highlights the dynamic nature of memory retrieval, where
multiple memories associated with a retrieval cue compete for
activation, and the strongest or most relevant memory tends
to dominate the recall process. These competitive dynamics
can manifest in two forms: proactive interference, where older
memories overshadow new ones upon cue presentation, and
retroactive interference, where new memories hinder the recall
of older ones.

A. Confusion Loss
Our proposed method, CONFUSE, aligns with the retroac-

tive interference-based competition theory. Specifically, we
leverage insights from neural processes on how memories
compete within the brain’s intricate network of neurons and
apply them to the artificial neural networks in the FL. For
client k to perform unlearning with its local dataset Dk, Dk

is divided into the forgetting set Dk
f and the remaining set Dk

r .
We implement the retroactive competing step locally on the
client. For each data sample (xi, yi) in the forgetting set Dk

f ,
we create a confusion sample set (xi, yj)|yj ̸= yi, ∀j ∈ J
for all the available labels J in the dataset. Combining all the
confusion sample sets, we create a confusion set Dk

c . We then
compute the confusion loss to optimize the global model:

Lconf =− log(σ(EDk
f
(θg)))−

∑
Dk

c

1

|Dk
c |

log(σ(EDk
c
(θg)))

+
∑
Dk

c

1

|Dk
c |

∥EDk
f
(θg)− EDk

c
(θg)∥2, (2)

where EDk(θg) = Exi∼Dk [f(θg;xi), yi]} and σ(.) is the
sigmoid function. This loss function encourages the model to
“forget” its dependence on the forgetting set Dk

f . It penalizes
the model for high confidence in predictions about Dk

f while
promoting increased certainty in the confusion set Dk

c , thus
inducing a state of confusion regarding Dk

f and reducing
predictive accuracy on this subset.

This confusion loss primarily penalizes the model for cor-
rectly predicting the samples in the forgetting set, leading to
changes in weights associated with these predictions. However,
these changes are often localized to specific features and do
not necessarily eliminate all useful information the model has
learned about the dataset. As a result, the model might still re-
tain subtle knowledge associated with the data in the forgetting
set, especially if these patterns are also useful for predicting
other data points. This incomplete forgetting process can leave
traces in the model’s parameters, which can then be exploited.
To address this, a regularizer term is introduced to minimize
the prediction differences between Dk

f and Dk
c . This function

ensures that while the model is forgetting Dk
f , it does not do

so by becoming overly confident in its predictions for Dk
f as

compared to other subsets. Instead, the model’s performance
on Dk

f should gently degrade, becoming more in line with its
uncertainty about other data points.

B. Saliency-guided Federated Unlearning
After the confusion unlearning, memories of the forgetting

set are erased. However, a significant decrease in model perfor-
mance may happen. The model optimization in the confusion
unlearning is limited to specific data samples to forget, which
slightly destroys the generalization of the client model. To
mitigate this issue, most unlearning-based methods [10], [12]
use knowledge distillation to transfer knowledge of the pre-
unlearning model to the post-unlearning model. However,
this increases the computational overhead for clients who
may be an edge device in an IoT network. To mitigate this
issue, we use gradient-based weight saliency relying on the
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Fig. 1. Illustration of CONFUSE.

fact that contemporary learning models can be decomposed
into manageable subparts, each of which can be more easily
maintained and updated independently.

Building upon this fact we decompose the pre-unlearning
global model weights (θg) into two distinct components: the
salient model weights earmarked for updating during FU and
the intact model weights that remain unchanged. We utilize
the gradient of the loss (lkf (θg;D

k
f )) with respect to the model

weights variable (θg) under the local forgetting dataset Dk
f of

client k. By applying a stochastic thresholding operation, we
can then obtain the desired weight saliency mask:

ms = 1

(∣∣∣∣∇θg (l
k
f (θg ;D

k
f ))

∣∣∣∣ < 1

1 + e
−γ(|∇θg |−τ)

)
, (3)

where 1(.) is an element-wise indicator function that outputs
a value of 1 for each model weight if the absolute value
of its gradient is below a sigmoid-threshold function and 0
otherwise. The sigmoid function is modulated by a scaling
factor γ which adjusts the steepness of the curve, and a
threshold τ which shifts the curve along the gradient mag-
nitude axis. The stochastic nature comes from the fact that the
sigmoid function introduces a probabilistic “soft” threshold,
rather than a hard cutoff. Weights with gradient magnitudes
close to τ will have probabilities that could go either way,
making the masking process not purely deterministic but
rather probabilistic. Leveraging this mask, we articulate the
unlearning model for client k as follows:

θku = ms ⊙ (∇θg + θg) + (1−ms)⊙ θg , (4)

where ⊙ is an element-wise product. This equation implies
that during the weight update phase, the focus is on updating
only the salient weights as identified by the mask, while the
remainder of the weights in the model are retained without
alteration. This selective focus ensures that the unlearning
process is both targeted and efficient, altering only the nec-
essary aspects of the model in response to the removal of
the forgetting dataset eliminating the need for knowledge
distillation.

C. Design of CONFUSE
Incorporating both the confusion loss and saliency-based

unlearning, we introduce CONFUSE that is both effective and
computationally efficient. Fig. 1 provides a schematic of our
proposed approach. When a client k wishes to unlearn specific
knowledge from the global model, it categorizes its dataset
into two parts: the forgetting set Dk

f and the remaining set

TABLE I
FEDERATED DATASET DESCRIPTION

Dataset Dimensions Classes Clients Model FL. Round
MNIST 28 × 28 10 20 LeNet-5 100

CIFAR-10 32 × 32 10 20 ResNet18 100
Adult Income 14 × 1 2 20 MLP 50

Dk
r . From the forgetting set, the client generates a confusion

set Dk
c .

Utilizing the global model, the client first produces a
saliency map ms for the global model weights θg using
Eq. 3. This saliency map highlights the model weights that
are most influenced by the forgetting set. Following this, the
client employs both the forgetting set and the confusion set to
update the identified salient weights in Eq. 4. This update is
governed by the loss function in Eq. 2, focusing on aligning
the model’s output distributions between the forgetting set and
the confusion set. The optimization task for updating the local
model is formulated as:

min
θku

Lconf =− log(σ(EDk
f
(θku)))−

∑
Dk

c

1

|Dk
c |

log(σ(EDk
c
(θku)))

+
∑
Dk

c

1

|Dk
c |

∥EDk
f
(θku)− EDk

c
(θku)∥2, (5)

where EDk(θku) = Exi∼Dk [ℓ(θku;xi), yi] represents the ex-
pected loss over the data points in the dataset Dk. This process
effectively modifies the local model to “forget” or unlearn
the features and knowledge associated with the forgetting set,
while the rest of the model remains largely unaffected.

V. EVALUATION

Evaluation Scenarios: We evaluate our proposed method
through three distinct scenarios to demonstrate its robust capa-
bilities: (i) Neutralizing the influence of backdoor triggers in-
volves client-level unlearning, which is critical for completely
removing data from a specific client, especially in situations
of data compromise or client withdrawal. (ii) Mitigating the
risks associated with membership inference attacks through
instance-level unlearning tests the method’s precision in se-
lectively forgetting particular data instances. (iii) Eliminating
biased triggering features via feature-level unlearning assesses
the granularity of our approach in removing specific features.
A successful outcome across these scenarios would manifest
as diminished model performance on the targeted forgetting
data samples, underscoring the versatility and effectiveness of
our unlearning approach.

Dataset Description: For our evaluation, we use the follow-
ing three public datasets that are commonly used in machine
learning research: MNIST [23], CIFAR-10 [24], and Adult In-
come [25]. Details of these datasets, including their attributes,
class numbers, and the distribution of data across clients in the
federated learning setup, are summarized in Table I. Data from
these datasets were uniformly distributed among all clients to
simulate a realistic federated learning environment. We set the
τ and γ to 0.1 for all the datasets. We initiate the unlearning
process after successfully training the model for the mentioned
communication rounds in Table I.



Fig. 2. Backdoor attack success com-
parison.

Fig. 3. Non-poisoned set accuracy
comparison.

Evaluation Metrics: Our experimental framework assesses
several key performance metrics, including prediction ac-
curacy, attack success rate, true positive rate (TPR), false
positive rate (FPR), and training speed. These metrics provide
a comprehensive view of the model’s performance and the ef-
fectiveness of the unlearning process under various conditions.

Baselines: To validate the performance of CONFUSE, we
compare it against Four baseline approaches: (i) FedAvg,
vanilla FL training without any unlearning operations; (ii)
Retrain, involves retraining the model from scratch, serving
as a benchmark for maximum efficacy in removing learned
knowledge; (iii) Goldfish [11], represents a loss-based unlearn-
ing method; and (iv) PGD Unlearn [15], employs a Projected
Gradient Descent approach tailored for federated unlearning
scenarios. These comparisons help to contextualize the per-
formance and advantages of our proposed method within the
broader landscape of federated unlearning techniques.

A. Unlearning Under Backdoor Attacks (Client-level)
We use the artificial backdoor triggers [26] as an effective

way to evaluate the performance of unlearning methods.
Backdoor attacks are uniquely challenging because they do
not affect a model’s performance on standard inputs but distort
predictions when specific, pre-defined triggers are present.
This characteristic makes backdoor attacks an ideal test case
for evaluating unlearning effectiveness. A successfully un-
learned global model should maintain good performance on
standard evaluation datasets while significantly reducing the
success rate of backdoor attacks. For the experiment, we
introduced backdoor triggers into the model by selecting 10%
of clients and poisoning their data with a ‘pixel pattern’ trigger
sized 3x3. The selected clients then attempted to unlearn
their data samples locally. After three communication rounds
of unlearning, we evaluated the global model’s performance.
The comparative results on backdoor accuracy across various
unlearning baselines, including our method CONFUSE, are
shown in Fig. 2. Complete retraining sets the benchmark with
the lowest backdoor accuracy. The methods PGD Unlearn and
Goldfish lowered backdoor accuracy to 21%, 22% and 14%,
17% for CIFAR-10 and MNIST, respectively. CONFUSE
achieved higher reductions, with backdoor accuracies of 13%
and 15% on CIFAR-10 and MNIST, closely matching the
retraining results.

Beyond backdoor accuracy, maintaining high accuracy on
non-poisoned datasets is critical. Fig. 3 details post-unlearning
accuracy. While PGD Unlearn and Goldfish show some ac-

(a) CIFAR-10 (b) MNIST

Fig. 4. Membership inference attacks accuracy (efficacy) for the two attacks.

curacy losses — recording 89.5%, 91.5% for CIFAR-10 and
90.5%, 92.3% for MNIST — CONFUSE maintains higher ac-
curacies of 91.8% and 93.9% for the two datasets respectively,
demonstrating minimal performance degradation and aligning
closely with retraining results.

B. Unlearning Under MIA Attacks (Instance-level)
To further evaluate the efficacy of the method’s instance-

level unlearning, we conducted a membership inference attack
(MIA) test. Unlike the backdoor attack scenario, this setup
involved no intentional poisoning of the data samples. We
leveraged two prominent membership inference attacks for
this assessment: the Shokri attack [27], which constructs
shadow models to simulate the target model’s behavior, and
the Yeom attack [28], which differentiates between members
and non-members based on training and test loss values. For
this evaluation, we compared the performance of baseline
unlearning methods, CONFUSE, a fully retrained model, and
the original FedAvg model (the initial global model formed
through federated learning before any unlearning efforts). The
results of this comparison are illustrated in Fig. 4, which
presents the success rates of the MIA across different datasets
and attack types before and after unlearning.

The findings show that both baseline unlearning methods
significantly reduce the MIA success rate compared to the
original FedAvg model. However, these rates are still higher
than those observed with the fully retrained model. In contrast,
CONFUSE achieved MIA success rates very close to those of
the fully retrained model, underscoring the robustness of our
approach in enhancing privacy. This demonstrates not only
the capability of CONFUSE to effectively mitigate the risks
associated with membership inference but also its comparative
effectiveness close to that of complete retraining, thereby
affirming the high efficacy of our method in data unlearning.

C. Unlearning Under Bias Analysis (Feature-level)
One of the distinctive capabilities of our proposed method,

CONFUSE, is its ability to unlearn both specific features
and entire instances. While previous evaluations focused on
instance-level unlearning, we also assessed feature-level un-
learning using the Adult Income dataset. This dataset is
particularly suitable for such analysis because it exhibits an
inherent gender bias due to a higher proportion of male
samples compared to female samples. This imbalance can
lead to a model that disproportionately favors one gender.
To address this, our unlearning approach specifically targets



TABLE II
PERFORMANCE OF CONFUSE AT BIAS UNLEARNING

Method TPR FPR AccuracyMale Female Male Female
FedAvg 0.88 0.97 0.33 0.46 84.9%
Retrain 0.89 0.87 0.35 0.38 83.7%

CONFUSE 0.88 0.90 0.36 0.41 83.1%

gender features within the dataset. Instead of considering the
entire data knowledge as the forgetting set, we selectively
target the gender attribute. In practical terms, this means our
forgetting set, Df , consists solely of the gender feature gi
while masking the other features using a binary mask with
the labels yi, making it possible to directly address the bias.

As conventional baseline methods lack support for feature-
level unlearning, we compared our approach, CONFUSE,
against a model retrained after removing the gender feature
from the dataset. We used TPR and FPR to evaluate fairness,
revealing that our method effectively reduced gender bias.
From Table II we can see that the FedAvg model showed
a disparity in sensitivity and specificity between genders.
However, after retraining without the gender feature, the model
achieved more balanced TPRs of 0.89 for males and 0.87 for
females, and FPRs of 0.41 and 0.44, respectively. CONFUSE
similarly mitigated gender bias, demonstrating TPRs of 0.88
for males and 0.90 for females, alongside FPRs of 0.40
and 0.45 after unlearning the gender feature. These results
affirm the effectiveness of CONFUSE in removing biases and
enhancing fairness in machine learning models.

VI. CONCLUSION

In conclusion, our proposed framework, CONFUSE, marks
a significant stride in Federated Unlearning (FU) by adeptly
addressing at multiple granularities—individual instances, spe-
cific features, and entire client datasets. Utilizing a confusion-
induced method inspired by neuroscientific insights, our ap-
proach moves away from traditional reliance on historical
updates and gradients, streamlining the unlearning process
while ensuring the precision of memory degradation. The
saliency-guided technique we employ allows for the targeted
deconstruction and removal of specific knowledge segments,
maintaining the integrity and efficacy of the model. Exten-
sive validation on three benchmark machine learning datasets
demonstrates that CONFUSE is not only effective but also
adaptable across diverse FL scenarios.
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