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3D Facial Tracking and User Authentication
through Lightweight Single-ear Biosensors

Yi Wu, Xiande Zhang, Tianhao Wu, Bing Zhou, Phuc Nguyen, Jian Liu

Abstract—Over the last decade, facial landmark tracking and 3D reconstruction have gained considerable attention due to their
numerous applications such as human-computer interactions, facial expression analysis, and emotion recognition, etc. Traditional
approaches require users to be confined to a particular location and face a camera under constrained recording conditions (e.g.,
without occlusions and under good lighting conditions). This highly restricted setting prevents them from being deployed in many
application scenarios involving human motions. In this paper, we propose the first single-earpiece lightweight biosensing system,
BioFace-3D, that can unobtrusively, continuously, and reliably sense the entire facial movements, track 2D facial landmarks, and further
render 3D facial animations. Our single-earpiece biosensing system takes advantage of the cross-modal transfer learning model to
transfer the knowledge embodied in a high-grade visual facial landmark detection model to the low-grade biosignal domain. After
training, our BioFace-3D can directly perform continuous 3D facial reconstruction from the biosignals, without any visual input.
Additionally, by utilizing the identical array of ear-worn biosensors, we also showcase the potential for capturing both behavioral
aspects, such as facial gestures, and distinctive individual physiological traits, establishing a comprehensive two-factor
authentication/identification framework. Extensive experiments involving 16 participants under various settings demonstrate that
BioFace-3D can accurately track 53 major facial landmarks with only 1.85 mm average error and 3.38% normalized mean error, which
is comparable with most state-of-the-art camera-based solutions. The rendered 3D facial animations, which are in consistency with the
real human facial movements, also validate the system’s capability in continuous 3D facial reconstruction. Experiments also show that
the system can authenticate users with high accuracy (e.g., over 99.8% within two trials for three gestures in series), low false positive
rate (e.g., less 0.24%), and is robust to various types of attacks.

Index Terms—Mobile computing, wearable sensing, 3D facial reconstruction, user authentication, single-ear biosensing

✦

1 INTRODUCTION

Serving as a major role in human interactions, the face
conveys both verbal and non-verbal information, such
as intention, engagement, and emotion. Facial landmark
tracking and 3D reconstruction thus have been becoming
fundamental in various emerging applications which re-
quire facial analysis. For instance, facial landmark tracking
can be used for driver attentiveness monitoring to detect
drowsiness and abnormal behaviors [1]. Continuous 3D
facial reconstruction can enable a fully immersive user
experience by increasing the awareness of the user’s real-
time facial expressions and emotional states in virtual
reality (VR) scenarios [2]. Moreover, recognizing facial
movements can enable silent-speech interfaces for conve-
nient human-computer interactions [3]. Additionally, in-
corporating user authentication alongside facial tracking
has the potential to create a more personalized, conve-
nient, and secure user experience. User authentication is
essential for numerous privacy-sensitive VR applications
(e.g., virtual banking), while identifying the specific user
could help to provide personalized experiences based on
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distinct user preferences. Different from conventional VR
authentication schemes in which users are required to
input passwords utilizing handheld controllers which is
not only inconvenient but also vulnerable to potential side-
channel attacks [4], [5], an authentication system capable of
verifying the user’s identity through simply performing fa-
cial expressions would significantly enhance convenience.

Prior Research on Facial Landmark Tracking. Tra-
ditional vision-based approaches (e.g., [6], [7], [8]) can
localize facial landmarks and produce high-quality facial
animations, however, they require a camera positioned
in front of the user’s face and constrained recording
conditions, such as requiring an entire view of the face
without occlusions and in good lighting environments.
Additionally, a lot of wearable-sensor-based methods have
been proposed to recognize user’s facial gestures, such
as magnetic sensing [9], capacitive sensing [10], and elec-
tromyography (EMG)-based sensing [11], [12]. However,
all these studies can only distinguish a small set of pre-
defined facial gestures. To the best of our knowledge, there
has been no prior work that can continuously track the
positions of facial major landmarks (e.g., the mouth, nose,
eyes, and eyebrows) and reconstruct 3D facial animations
using camera-free and unobtrusive wearable technology.

Prior Research on Wearable/VR Authentication. Com-
mercial EEG headsets (e.g., Emotiv Epoch+ [13]) have been
demonstrated to be proficient in distinguishing between
various users by harnessing EEG signals [14], [15], [16].
Alternatively, there has been active research on VR authen-
tication leveraging various types of biometrics, including
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Fig. 1. Illustration of the reconstructed 3D facial avatar with various
facial expressions2.

head motion [17], [18], body motion [19], and ultrasonic
reverberations caused by the shape of the users’ heads [20].
Nonetheless, none of these studies have the capacity to
concurrently conduct 3D facial tracking, and their sensor
placement tends to be rather obtrusive (e.g., involving over
10 sensing channels).

System Objective and Challenges. To circumvent all
the limitations of existing approaches, this paper aims to
provide a wearable biosensing system that incorporates
two major functionalities: (a) Facial Tracking: Unobtrusively,
continuously, and reliably sense the entire facial move-
ments, track 2D facial landmarks, and further render 3D fa-
cial animations through fitting a 3D head model to the 2D
facial landmarks; and (b) User Authentication/Identification:
Distinguish different users and authenticate legitimate
users through executing a series of pre-defined facial ex-
pressions. Although existing studies (e.g., [12], [14], [21])
have shown the success of using biosensors, such as EMG
and electrooculography (EOG), to detect facial muscle ac-
tivities, eye movements, and authenticate users, realizing
such a system is still very challenging:
(1) Biosensing-based Facial Landmark Tracking: Tracking facial
landmarks via biosensing is an unexplored area. Although
the captured biosignals can potentially sense expressive
facial deformations, it remains unclear how to learn the
spatial mapping between the biosignals and facial land-
marks.
(2) Unobtrusive Facial Sensing: To allow a long-term facial
sensing with minimal impact on the user’s mobility and
comfort, the obtrusiveness and social awkwardness caused
by our designed wearable device should be minimized.
(3) Continuous 3D Facial Reconstruction: A compelling 3D
facial avatar animation requires the rendered 3D faces to
be continuous and smooth over time, and the animation
should be generated in a timely manner for real-time
applications.
(4) Biosensing-based Authentication/Identification: Biosignals
exhibit significant variability even within the same user,
due to variations in gesture intensity, biosensor placement,
and shifts in bodily conditions. Therefore, the designed au-

2. Our rendered facial animation samples can be found at https:
//mosis.eecs.utk.edu/bioface-3d.html.

thentication/identification system must possess resilience
against these contextual factors.

System Design. To address these challenges, we ex-
plore a novel point in the design space and propose a
single-earpiece biosensing system, as illustrated in Fig. 1.
Specifically, our customized sensing prototype uses two-
channel biosensors (i.e., surface electrodes) attached to a
very small area around one side of the user’s ear to cap-
ture both EMG and EOG bioelectrical signals. This sensor
position ensures the sensing capability of the biosensing
system in providing sufficient information for the entire
facial reconstruction while still remaining a minimized
obtrusiveness level to the wearer. To enable 3D facial
reconstruction beyond the confines of cameras, we build a
cross-modal transfer learning model that can learn vision-
biosignal correspondences in a supervised manner, which
pushes the limits of biosensing to enable rich sensing
capabilities that are currently infeasible. More specifically,
our designed transfer learning model consists of a visual
landmark detection network and a biosignal neural net-
work, enabling facial landmark detection knowledge to be
transferred across modalities during training time. During
testing, the well-trained biosignal network can directly
localize 2D facial landmarks from the biosignals, without
any visual input. The recognized 2D facial landmarks will
be further processed with a Kalman filter and fitted into a
generalized 3D head model to render continuous 3D facial
animations. Additionally, due to the variance in signal
strength, response, and sensitivity of biosignals on differ-
ent individuals, we currently adopt user-specific training
for BioFace-3D, in which the cross-model mapping is user-
dependent. Furthermore, to enable user authentication and
identification, we design a CNN-LSTM-based framework
with channel- and spatial-wise attention to extract user-
specific features from long-term biosignals. The feature
representations are further fed into different classifiers for
user authentication and identification, respectively. Our
main contributions are summarized as follows:

• To the best of our knowledge, BioFace-3D is the first
single-earpiece biosensing system that can unobtru-
sively, continuously, and reliably sense the entire facial
movements, track 2D facial landmarks, and further ren-
der 3D facial animations through fitting a 3D head model
to the 2D facial landmarks. The advanced biosensing
system also demonstrates potential for two-factor user
authentication and identification based on biosignal.

• Through a thorough anatomical analysis of human facial
muscles and elaborate experiments, we identify optimal
biosensor placement positions on the face to maintain a
minimized obtrusiveness level of the sensing prototype.

• Relying on the transfer learning across multiple modali-
ties, we push the limits of biosensing to make it possess
the capability of other high-grade modalities (e.g., vision).
This significantly extends its sensing capabilities beyond
the common form of biosensing and introduces new
opportunities for many emerging applications.

• Extensive experiments involving 16 participants and
various settings demonstrated the effectiveness and ro-
bustness of the system. The results show that BioFace-
3D can accurately track 53 facial landmarks with only
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Fig. 2. BioFace-3D facial tracking system overview.

1.85 mm average error and 3.38% normalized mean
error, which is comparable with most camera-based
solutions. The system additionally boasts remarkable
performance in user authentication, achieving a true
positive rate surpassing 99.8% within two trials for three
gestures in series, accompanied by a notably low false
positive rate (e.g., below 0.24%).

Our preliminary work has been published in ACM Mo-
biCom 2021 [22]. In this journal paper, we present ex-
tensive revisions and enhancements centered around har-
nessing biosignals for user authentication/identification.
Additionally, we elevate the standard 3D avatar concept by
fashioning user-specific, photorealistic animations. These
animations incorporate intricate facial details, resulting in
a heightened sense of immersion and personalization.

2 SYSTEM OVERVIEW

As shown in Fig. 2, the proposed BioFace-3D has two
phases: the training phase in which our system uses the
biosignals and visual information in a supervised manner
to learn the real-time behavioral mapping from biosignal
stream to facial landmarks, and the testing phase where the
well-trained biosignal network can work independently
to perform continuous 3D facial reconstruction, without
any visual input. Specifically, during training, we collect
visual and biosignal streams using an off-the-shelf camera
(e.g., a laptop’s built-in camera) and our designed BioFace-
3D wearable device (Appendix C), respectively. We then
perform Signal Synchronization to ensure the synchroniza-
tion between the streamed biosignal and the video frames.
After that, the visual and biosignal streams are separately
processed as follows:

Visual Stream in Training. We first conduct Video
Resampling to make the recorded videos from different
camera types to be resampled in a uniform frame rate,
which allows the vision network to take any visual input
regardless of its actual frame rate in recording. Next, we
perform Face Detection for each video frame, and crop the
frame to only preserve the detected face. The cropped
image frames are then fed into the pre-trained Vision-based
High-resolution Network for 2D facial landmarks detection.
Furthermore, we employ Landmark Alignment to eliminate
the effect caused by head poses (i.e., scale, rotation, and

translation). The detected 2D facial landmarks are then
warped and transformed into a uniformly aligned coordi-
nate space, which will serve as the ground truth to guide
the training of the biosignal network. Please note that the
choice of the vision-based model can be adjusted to suit
the particular demands of the applications. Section 4.2 in-
troduces how to reconstruct 3DMM parameters and create
a more personalized photo-realistic animation.

Biosignal Stream in Training. BioFace-3D collects two
biosignal streams from the biosensors integrated into our
single earpiece wearable. Each biosignal stream is first
processed to obtain both EOG and EMG biosignal streams
via Bandpass Filtering [23]. We then apply Biosignal Frame
Segmentation to segment the filtered biosignal stream into
frames, each corresponding to a re-sampled video frame.
The signal segments are then fed into Biosignal-based Multi-
input CNN Network to reconstruct 2D facial landmarks.
To transfer knowledge from the vision network into the
biosignal domain, we utilize the Wing loss [24] to enhance
attention of the landmarks which are important but less
active (e.g., pupils) and to help the biosignal network learn
an accurate spatial mapping between biosignals and facial
landmarks.

Biosignal Stream in Testing to Continuously Re-
construct 3D Faces. During testing, the biosignal stream
first passes through the same pre-processing procedures
in training. Then the fine-tuned biosignal network can
continuously reconstruct 2D facial landmarks from the
biosignal stream, without any visual input. To ensure
a fluent 3D avatar animation, we then apply Landmark
Smoothing via Kalman Filter to stabilize the facial landmark
movement across successive frames. Next, we generate 3D
facial animation from the stabilized landmarks using the
FLAME (Faces Learned with an Articulated Model and
Expressions) model [25]. The generated sequence of fitted
head models can then be used for rendering a 3D facial
animation that recovers the user’s facial movements.

3 BIOSIGNAL-BASED FACIAL LANDMARK RE-
CONSTRUCTION VIA KNOWLEDGE TRANSFER

In this section, we describe the detailed training procedure
and the designed knowledge transfer learning network
across multiple sensing modalities.
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3.1 Signal Synchronization

To guarantee the synchronization between the two modal-
ities’ data streams, the user needs to tap the earpiece
near the bottom measurement sensor at the beginning of
the training phase. This way, a sharp and sizeable peak
will be generated in the biosignal stream due to the skin-
electrode contact variation, while such an event can also be
tracked in the video stream with quantifiable accuracy
(e.g., through detecting the user’s hand using a pre-trained
hand keypoint detection model [26]). To detect such a
peak in the biosignal stream, we implement a z-score
peak transformation algorithm [27], which calculates if any
data point of the biosignal stream deviates from a moving
average by a given threshold τ . In our implementation, we
use a moving window size of 40 milliseconds across all
users, which is sufficient to detect the signal peak caused
by the finger tap. The threshold τ is set to µw ± 0.4σw,
where µw and σw are the mean and standard deviation of
the sliding window. This z-score based method has been
shown to be effective and accurate throughout our system
evaluation.

3.2 Data Pre-processing

Visual Stream - Video Resampling & Face Detection.
To make our system compatible with various recording
devices of different frame rates, we first downsample the
recorded video to a uniform frame rate fv = 20, which
can also reduce the computational cost for real-time facial
reconstruction while maintaining the fluency of the video.
Specifically, given the frame rate of the original video fo,
we only keep fv

fo
of the frames equally distributed in the

video buffer, and the timestamps of these frames are then
re-scaled to the new timebase (i.e., 1

fv
). After resampling,

we apply a pre-trained Haar Cascade Classifier [28], which
provides high accuracy in object detection under varied
lighting conditions, to each downsampled video frame
for face detection. To meet the required input size of the
following vision network, we then make the detected face
centered, crop the corresponding square area, and resize
the cropped frame to 256× 256 pixels.

Biosignal Stream - Bandpass Filtering & Biosignal
Frame Segmentation. On the biosignal side, we first apply
two band-pass filters to extract the main structure of the
bio-electrical signals, i.e., EMG and EOG bioelectrical sig-
nals [23]. Moreover, in order to transfer knowledge from
the vision-based facial landmark detection model into the
biosignal modality, we need to match the visual input (i.e.,
resampled video frames) with the time-series biosignal
input. To match with each video frame, we segment the
biosignal streams (i.e., both EMG and EOG signals) into
overlapped short frames starting at each video frame’s
timestamp. Given that the gap between adjacent frames
is 1

fv
= 0.05s and the sampling rate of biosignal is 250

Hz, the length of each biosignal frame is set to l = 0.5s
for all experiments, which creates massive overlapped
data samples between adjacent biosignal frames as well
as sufficient data for the CNN network. This setting makes
the subsequent transfer learning model better capture the
temporal dynamics and dependencies among continuous
biosignal streams to ensure smooth frame transitions in the
rendered animation.

53 major landmarks used 
by BioFace-3D

Other landmarks in the 
WFLW dataset, which has 
98 landmarks in total

Fig. 3. Major facial landmarks used in BioFace-3D.

3.3 Vision-based High-resolution Network
Conventional image-processing networks for facial land-
mark detection either rely on low-resolution features built
by gradually reducing the size of the feature maps (e.g.,
TCNN [29]), or utilize a 2-stage high-to-low and low-to-
high process to first extract low-resolution features and
then rebuild high resolution features through deconvolu-
tion and unpooling operations (e.g., encoder-decoder [30]).
However, the important spatial and semantic information
embedded in the initial high-resolution features might be
lost during this process and is hard to recover. To ad-
dress this and improve the recognition accuracy, we adopt
a high-resolution network (HRNet) [8] which maintains
high-resolution through the whole process. As shown in
Fig. 2, the whole network consists of four stages, in which
low-resolution convolution streams are added gradually
during the training process.

Specifically, the first stage only has a single high-
resolution (64 × 64) stream with 12 convolutional layers,
and the depth is set to 18. The subsequent stages decrease
the resolution to 1

2 of the resolution of the previous stage
and double its depth. Stage 2 adds a lower resolution
stream and the number of layers is increased to 16, while
Stage 3 and Stage 4 handle more streams in parallel using
96 convolutional layers, with 16 × 16 and 8 × 8 resolution,
respectively. Each stage processes a number of convolution
streams with different resolutions in parallel. At the end of
each stage, information is exchanged among different res-
olutions via repeated multi-resolution fusions, where low-
resolution representations are up-sampled and concate-
nated with the high-resolution representation. Specifically,
we use a pre-trained model on the WFLW dataset [31],
which has a total of 98 landmarks, as shown in Fig. 3.
To reduce computational complexity, we only keep 53
landmarks that cover major facial components such as
eyes, eyebrows, nose, and mouth. The output of the vision-
based facial landmark detection network provides biosig-
nal modality with transferable knowledge for training the
biosignal network.

3.4 Landmark Alignment
The detected landmark positions can be impacted by large
head pose variations caused by head motions, facing di-
rections, and camera angles and positions. To eliminate
the impact of these irrelevant factors, we attempt to obtain
a canonical alignment of the face based on affine trans-
formations including translation, rotation, and scaling.
Specifically, given the coordinate of the ith facial landmark
(xi, yi), the transformed landmark (x̂i, ŷi) can be obtained
by:
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Fig. 4. Illustration of facial landmark alignment.x̂iŷi
1

 = R ·

xiyi
1

 =

r11 r12 r13
r21 r22 r23
0 0 1

 ·

xiyi
1

 , (1)

where R is the affine matrix. To derive R, we fix the
positions of three aligned landmarks (i.e., the left canthus
(x̂1, ŷ1), the right canthus (x̂3, ŷ3), and the tip of the nose
(x̂2, ŷ2)) which are supposed to be static in the aligned
coordinate space, as shown in Fig. 4. To be more specific,
given the video frame size of w×w, the coordinates of two
lateral canthus are fixed to (⌊ 3w

10 ⌉, ⌊
w
3 ⌉) and (⌊ 7w

10 ⌉, ⌊
w
3 ⌉),

respectively. According to ideal facial proportions [32], the
tip of the nose is fixed to (⌊w2 ⌉, ⌊

8w
15 ⌉). With the three

fixed landmarks’ coordinates and the coordinates before
alignment, we can derive all the unknown entries in R
through solving a set of six-variable linear equations. We
can then use Equation 1 to align all the remaining facial
landmarks.

3.5 Biosignal-based CNN Network

During the training of the biosignal network, we take the
aligned 2D facial landmarks from the vision network as
ground truth and train a 1D CNN network to regress the
facial landmarks directly from four channels of time-series
biosignals (i.e., two EMG and two EOG streams). Other
network architectures (e.g., TDNN and LSTM) may also
work, but 1D CNN is more suitable for end-to-end learning
of raw time-series data and has relatively lower computa-
tional cost [33]. Specifically, given the default sampling rate
of the biosignal fs = 250 Hz and the length of each biosig-
nal frame l = 0.5 s, the input size of the biosignal network is
4×125. The output of the network is the 2D coordinates of
53 facial landmarks. As shown in Fig. 2, the network has 4
1D convolutional layers and 2 fully-connected layers. Each
convolutional layer has a kernel length of ⌊ fsfv ⌉), which
is the time gap between adjacent frames. Additionally, the
number of filters is doubled when the network is processed
to the subsequent convolutional layer, which is initially set
to 10. Two max-pooling layers are added to the last two
convolutional layers to obtain a more compressed feature.

Loss Function. Training our learning model comes
down to minimizing the designed loss functions to de-
crease the error between predicted landmark positions and
the corresponding ground truths. As landmark position
loss treats each individual landmark independently, some
important but less-active landmarks, such as pupils com-
pared with lips, may not achieve good attention during
training because all the landmarks share an equal weight.

To address this issue, we adopt the wing loss function [24],
and the loss for each facial landmark is defined as:

Loss(xi) =

{
w ∗ ln(1 + |xi|/ϵ), if |xi| < w
|xi| − C, otherwise. (2)

where |xi| is the L2 distance between the ground truth
and the reconstructed coordinate for the ith landmark. w
represents the threshold of the small error, which is set to
20 in our case. ϵ means the curvature in the small error
range, and C = w − wln(1 + w/ϵ) which links the linear
part and non-linear part together. This way the small range
errors would obtain more attention when training a regres-
sion network, thereby significantly improving the network
training capability for the small-scale error landmarks.

Optimization. In addition, the network is trained using
the Adam optimizer [34], and the learning rate is set to 0.1
with a decay of 0.9 every 10 epochs. The stride and dilation
are all set to 1, and each layer has a dropout rate of 0.3 to
avoid over-fitting.
4 CONTINUOUS 3D FACIAL RECONSTRUCTION

In this section, we mainly introduce the testing phase of
BioFace-3D. Specifically, the well-trained biosignal network
takes as input each pre-processed biosignal frame to recon-
struct 2D facial landmarks. Then, a Kalman filter and a 3D
head model are used to stabilize landmarks and generate
3D facial animation, respectively.
4.1 Landmark Smoothing via Kalman Filter
We observe that the reconstructed facial landmarks re-
gressed directly from the biosignal network are inevitably
jittery, which may be caused by the instability of the
network as well as the noises introduced in the biosignal.
To guarantee the smoothness of the reconstructed 2D facial
landmarks over time, we adopt a Kalman filter [35] to
stabilize the landmark outputs. Specifically, given a fa-
cial landmark in the frame t, we define its state vector
st = [xt, yt, vtx, v

t
y, a

t
x, a

t
y]
T , where xt, vtx, a

t
x represents

the location, velocity, and acceleration of the landmark,
respectively, along x axis, while yt, vty, a

t
y stands for y axis.

A state-space model describing this landmark movement
thus can be represented as st = Ast−1, and the landmark
coordinates zt = Hst, where the state transition matrix A
and the observation matrix H can be defined as:

A =


1 0 ∆t 0 1

2∆t
2 0

0 1 0 ∆t 0 1
2∆t

2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

 ,H =


1 0
0 1
0 0
0 0
0 0
0 0



T

,

(3)
where ∆t = 1

fv
represents the time interval between two

adjacent frames. Given the known constant variable ∆t
and the frame size of 256× 256, based on the relationships
between the six variables in st, the process and measure-
ment noise covariances, Q and R, are set to:

Q =



1
4∆t

4 0 1
2∆t

3 0 1
2∆t

2 0
0 1

4∆t
4 0 1

2∆t
3 0 1

2∆t
2

1
2∆t

3 0 ∆t2 0 ∆t 0
0 1

2∆t
3 0 ∆t2 0 ∆t

1
2∆t

2 0 ∆t 0 1 0
0 1

2∆t
2 0 ∆t 0 1

 ,R =

[
12.5 0
0 12.5

]
.

(4)
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The process noise covariance is a covariance matrix associ-
ated with the errors in the state vector st, where the noise
of acceleration is initialized to 1. This covariance will auto-
matically get updated to achieve a good state. The values
in the measurement noise covariance matrix are set to a
relatively large value, which ensures that jittery landmarks
with larger errors can still be effectively smoothed. The
smoothed landmark coordinate in the frame t can then be
derived as Hŝt, where ŝt is the optimal state estimate.

We calculate the average standard deviation of all
mouth-related landmarks as the evaluation metric to val-
idate the effectiveness of the Kalman filter. Specifically,
we select 4 minutes of reconstructed landmarks in which
the user repeatedly performs the surprise expression. In
addition to the Kalman filter, we also implement a simple
linear interpolation technique, in which the average of
each adjacent frame pair is compensated between them.
Specifically, the average standard deviation of all mouth-
related landmarks is 8.66 if no smoothing techniques are
applied, 8.61 when simple linear interpolation is utilized,
and 7.73 when the Kalman filter is implemented. The
results demonstrate the effectiveness of the Kalman filter
on landmark smoothing.

4.2 3D Avatar Generation
To improve system usability and reduce modeling com-
plexity, we seek a compact head model that can be easily
fitted to data while preserving enough details to generate
expressive facial animations.

FLAME 3D Head Model. The FLAME (Faces Learned
with an Articulated Model and Expressions) model [25]
is a statistical 3D head model that uses a learned shape
space of identity variation and articulated jaw, neck, and
eyeballs to achieve accurate, expressive, and computa-
tionally efficient 3D face modeling. The model is based
on linear blend skinning and corrective blendshapes, and
contains 5023 vertices and 4 rotary joints (neck, jaw,
and eyeballs). The modeling process can be viewed as
a function: M(β⃗, θ⃗, ψ⃗) : R|β⃗|×|θ⃗|×|ψ⃗| → R3N , that takes
shape β⃗ ∈ R|β|, pose θ⃗ ∈ R|θ|, and expression coefficients
ψ⃗ ∈ R|ψ| and return N vertices. The model is composed
of a template mesh of a neutral pose, shape blendshapes,
pose blendshapes, and expression blendshapes, which are
used to account for variations caused by identity, pose
deformation, and facial expressions, respectively.

Optimization-based Shape Reconstruction. To gener-
ate a 3D head model that reflects the user’s facial move-
ments and expressions, we exploit a 2-stage optimization
process to fit the generic 3D head model to the 2D land-
marks extracted from biosignals. In the first stage, we con-
duct camera calibration by optimizing the parameters for
rigid transformation, including scale, rotation, and transla-
tion, to minimize the L2 distance between the landmarks
and the corresponding 3D head model vertices projected
into the 2D space. In the second stage, we optimize the
model parameters (e.g., pose, shape, and expression) by
optimizing the L2 distance while regularizing the shape
coefficients β⃗, pose coefficients θ⃗ (including neck, jaw, and
eyeballs), and expression coefficients ψ⃗ by penalizing their
L2 norms. After optimization, we can generate a 3D head
model that recovers the user’s facial expressions.

Deep3D
Face

PIRender

3D Mesh

Original Image

Generated Image

Bioface-3D
Model

Loss

Generated 3DMesh

Fig. 5. Overview of photo-realistic animation generation.

4.3 Photo-realistic Animation Generation

FLAME utilizes a generic head model that lacks de-
tailed features and awareness of the user’s face. Con-
sequently, we provide users with an additional option
to generate personalized, photo-realistic animations that
incorporate specific facial details instead of the generic
3D animation. Specifically, instead of 2D facial landmarks,
we change the output of the biosignal-based CNN net-
work to 3D face meshes, which are represented using 3D
Morphable Model (3DMM) [36] coefficients. As depicted
in Fig. 5, different from sparse 2D landmarks, 3D face
meshes capture a more densely detailed geometry and pre-
serve personalized facial features. We use Deep3DFace [37]
to extract 3DMM coefficients from facial images as the
groundtruth. Deep3DFace could be considered as a mod-
ified ResNet-50 [38] network, where the size of the last
fully-connected layer has been adapted to 239. This layer
is structured to represent 3DMM coefficients representing
identity, expression, texture, pose, and lighting of the input
facial image. We change the final fully-connected layer
of the biosignal-based 1DCNN network to 239, and use
L2 loss to reconstruct the 3DMM coefficients. We set the
learning rate to 0.001 with a decay of 0.95 every 10 epoches
using the Adam optimizer. The dropout rate is 0.3.

As illustrated in Fig. 5, the reconstructed 3DMM coeffi-
cients are further combined with an arbitrary photo of the
user to synthesize the photo-realistic animation. We utilize
Portrait Image Neural Renderer (PIRenderer) [39], another
pre-trained deep learning model that utilizes 3DMM coef-
ficients to manipulate facial expressions and motions in
arbitrary facial images. PIRender is composed of three
sub-networks: a mapping network that maps the 3DMM
coefficients to a latent vector; a warping network that
estimates the difference between the input facial image and
the desired facial expressions based on the latent vector,
and generates coarse results through wrapping the input
image with the estimated deformations; and an editing
network which refines the coarse results and produces the
final photo-realistic images. The generated image in Fig. 5
captures the intended facial expression while retaining the
individual’s personalized facial details.
5 USER AUTHENTICATION & IDENTIFICATION VIA
BIOFACE-3D
5.1 Threat Model

We consider the following two application scenarios that
require to distinguish users: (1) User Authentication: In
this scenario, our aim is to authenticate the identity of a
sole legitimate user, granting access to a security-sensitive
service, while simultaneously denying entry to any other
individuals attempting to use the VR system; and (2)
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Fig. 6. Architecture of user authentication & identification.

User Identification: We consider a scenario in which a VR
device is shared among a group of individuals, and our
goal is to distinguish the unique user to offer customized
experiences. To demonstrate the reliability of the proposed
system, we consider the following attacks that are harmful
to the proposed authentication functionalities:

Blind Attack. A potential adversary seeks to circum-
vent the authentication system or masquerade as a specific
user for user identification by attempting random facial
expressions while wearing the wearable prototype.

Credential-aware Attack. The adversary possesses
knowledge of the authorized user’s credentials, which
include a prescribed sequence (consisting of three to five)
of facial expressions. With this information, the adver-
sary endeavors to imitate the genuine user’s facial ex-
pressions in an attempt to deceive the user authentica-
tion/identification system.

5.2 Data Augmentation
To address the inherent class imbalance commonly en-
countered in user authentication datasets, we imple-
mented data augmentation techniques exclusively within
the training dataset, enhancing the resilience of our mod-
els. Our approach consists of a dual strategy aimed at
rectifying the skewed class distribution. Initially, the un-
derrepresented class (e.g., legitimate user) is amplified
using the Synthetic Minority Over-sampling Technique
(SMOTE) algorithm [40], which generates synthetic sam-
ples, allowing us to achieve a more equitable representa-
tion of classes. This technique enables precise adjustment
of the minority-to-majority class ratio, fine-tuning the up-
sampling process. Furthermore, we apply additional data
augmentation through signal-based modifications, encom-
passing random time shifts of up to 10 ms, injection of
Gaussian noise, and amplitude scaling variations of up to
10% to further increase the diversity of the datasets. This
strategy effectively mitigates class imbalance, enhancing
the model’s adaptability to diverse scenarios.

5.3 System Overview for User Authentication & Iden-
tification
Fig. 6 illustrates the deep learning model architecture for
user authentication & identification. In the current design,
the user is prompted to execute either an individual facial
gesture or a sequence of such gestures within a brief
temporal window for user verification or identification.
Upon completion of each facial gesture input, similar to
the pre-processing steps for 3D facial tracking (Fig. 2), the
four-channel biosignals are initially filtered through dual

band-pass filters to extract EMG and EOG signals corre-
spondingly. The signals will then be fed into a CNN-LSTM
hybrid neural network, which can effectively combine
feature extraction and time series regression for deep learn-
ing and make full use of the spatio-temporal correlation
of the biosignals, for identity verification/identification.
By treating facial gestures as user-owned passcodes and
harnessing the distinctive individual traits encoded within
the biosignals, the system facilitates a fortified two-factor
framework for user authentication and identification.

To authenticate/verify users, the biosignals first pass
through two 1D CNN layers with 10 and 20 filters, respec-
tively. The kernel size is set to 2, with the stride length set
to 1. Additionally, we add Convolutional Block Attention
Module (CBAM) [41], which infers attention maps along
channel and spatial dimensions and assigns weights to
more important features. Two max-pooling layers with
kernel sizes of 2 and 3, respectively, are utilized after
each convolution layer to further down-sample features.
Different from the facial tracking task, which requires
rapid inference (i.e., 20 FPS) and short-term sequences (i.e.,
0.5s), the user authentication/identification task doesn’t
require such frequent inference, and the input length is
significantly longer. We therefore apply an additional Long
Short-Term Memory (LSTM) layer [42] after CNN layers to
further capture long-term dependencies in the biosignal,
which enables the model to effectively extract both spatial
and temporal representations from biosignals. Specifically,
we set the hidden layer size of the LSTM layer to 50, and
the output is flattened and fed into three fully connected
layers. The first two layers have 256 and 128 units, respec-
tively, while the size of the last layer is 2 (i.e., legitimate
user & adversary) for user verification and N for user
identification, where N is the number of enrolled users
in the system. We use ReLU as the activation function
and apply a dropout rate of 0.2 to avoid overfitting. We
utilize cross-entropy as the loss function, and the network
is trained using the Adam optimizer with the learning rate
set to 0.0005.

5.4 Series of Gestures & Majority Vote
To further enhance system performance, users have the
option to execute gestures multiple times, and the authen-
tication/identification network will provide correspond-
ing multiple prediction results. For the authentication net-
work, we utilize a hard majority vote, where the final
prediction equals the result generated by the majority
of the gestures. For the identification network, to deal
with circumstances in which conflicting predictions arise
(e.g., an extreme scenario where each of the predictions
corresponds to a different individual), we employ a soft
majority vote, wherein the softmax output of multiple
gestures is averaged to obtain the final result.
6 PERFORMANCE ON FACIAL TRACKING

6.1 Experimental Methodology
Experimental Setup & Data Collection. We recruited
16 participants to evaluate the performance of BioFace-
3D3. Particularly, the participants include 11 males and 5

3. The study has been approved by our Institutional Review Board
(IRB).
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Fig. 7. Performance of continuous facial landmark tracking for each
participant.

females, aging from 21 to 34 years old. Six of them wore
glasses during the data collection as usual. To evaluate
the performance of tracking 53 facial landmarks, we fo-
cus on seven universal facial expressions of emotion [43]
involving happy, sad, anger, surprise, fear, disgust, and con-
tempt, as shown in Fig. 1. The participants were asked to
sit in front of a camera (for training and ground truth
recording purposes) and repeatedly perform the aforemen-
tioned seven expressions while wearing our implemented
BioFace-3D prototype. Each expression was separated by
a neutral facial expression (i.e., relaxed facial expression).
To assist participants with their data collection, seven
pictures were displayed on a screen portraying the cor-
responding faces for them to imitate. The pace and to
which extent each expression was performed were not
controlled throughout the experiments. To show the gener-
alizability of our system in using various types of cameras
for training, we used a variety of cameras of different
resolutions and recording frame rates (e.g., 720P, 1080P
resolutions, and 25, 30 fps), including the webcam of a
Lenovo ThinkPad X1, a Lenovo Ideapad Y700, a MacBook
Pro 2019, an EMeet C960 Webcam on a desktop, and the
built-in rear camera of an iPhone 8.

Particularly, each participant was asked to repeatedly
make each facial expression for 4 minutes, which leads
to about 40 to 50 rounds of facial expressions. The data
collection lasts for 28 minutes (7 facial expressions in total)
for each participant, and their eye movements were not
constrained during the data collection. Unless mentioned
otherwise, for each participant, we use the first 20 min-
utes of data for training and the remaining 8 minutes of
data for testing. The default sampling rate of biosignals
per channel was set to 250 Hz. The impact of sampling
rate on performance will be discussed in Appendix D.3.1.
After data collection, we also asked participants to com-
plete a questionnaire on their experience with BioFace-3D,
which is elaborated in Appendix D.4. We also extended
our experiments to other types of facial movements (i.e.,
speaking) with 5 participants involved, which is detailed
in Appendix D.2. We further collected 4 additional datasets
with one participant involved to study the impact of facial
occlusion and bursty head movements. Three participants
separately evaluated the performance of eye tracking and
tested the system’s temporal stability when training and
testing data are separated by multiple days. The data
collection details for these tests are elaborated in Ap-
pendix D.1 and Appendix D.3.
Evaluation Metrics. 1) Mean Absolute Error (MAE) is the
absolute error between the reconstructed landmarks and
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Fig. 8. Performance of continuous facial landmark tracking for each
facial landmark and facial feature.

groundtruth landmarks, which are converted from pix-
els to a physical unit (millimeter). The MAE of a single
landmark can be calculated as MAE = ||g − r||2 × lr

lf
,

where g and r represent the groundtruth and reconstructed
landmark coordinates, respectively. lf is the distance be-
tween the two lateral canthus in the frame, which is ⌊ 2w

5 ⌉
as aforementioned in Section 3.4, while lr is the distance
between the two lateral canthus of the participant we
measured; 2) Normalized Mean Error (NME) is the mean
error between the groundtruth and reconstructed land-
mark coordinates, normalized by the inter-ocular distance,
which is a commonly used metric in camera-based solu-
tions for facial landmark tracking. Given the groundtruth
and reconstructed coordinates of landmark as g and r, the
NME can be calculated as NME = ||g−r||2

||glp−grp||2 , where glp
and grp denote the groundtruth of left pupil and right
pupil, respectively.

6.2 Overall System Performance

6.2.1 Facial Landmark Tracking (Facial Expression)
Fig. 7 (a) illustrates the average MAE & NME and corre-
sponding standard deviations for all the 53 facial land-
marks of each participant. We observe that all the par-
ticipants can achieve comparable low errors. Specifically,
BioFace-3D obtains an average of 1.85 mm MAE and
3.38% NME with average standard deviations of 0.99 mm
and 0.90%, respectively, indicating that mm-level accuracy
could be achieved in our system. Among all the partic-
ipants, U12 achieves the best reconstruction results with
only 1.29 mm MAE and 2.45% NME, while U7 has the
largest error (i.e., only 2.54 mm MAE though). Fig. 7 (b)
depicts the Cumulative Density Function (CDF) of the
MAE errors for each individual participant as well as cross-
participant cases. 80% of the reconstructed landmarks have
a low MAE of< 2.66 mm, which demonstrates the promis-
ing capability of BioFace-3D in tracking human 2D facial
landmarks.

In addition, distinct landmarks may have different
scales of errors due to their movement variability. Fig. 8
(a) visualizes the average MAE for the entire 53 major
landmarks, and Fig. 8 (b) shows the CDF of the catego-
rized landmarks. We find that reconstructed landmarks
on the mouth have a relatively larger error, but 80% of
them are still within an acceptable range (i.e., < 3.87
mm). Eye rims (12 landmarks in total without pupils) and
pupils (2 landmarks only) achieve a relatively lower MAE
error. Specifically, 80% of the reconstructed eye-related
landmarks are within 1.17 mm, indicating BioFace-3D can
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TABLE 1
Comparison with vision-based solutions.

Methods Dataset # of Landmarks NME
300-W 68 7.52SDM [44] LFPW 68 5.67
300-W 68 5.76CFSS [45] LFPW 68 4.87
300-W 68 2.87HRNet [8] WFLW 98 4.60

BioFace-3D Self-collected 53 3.38
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Fig. 9. Example of the rendered facial animation.

accurately track the unconstrained eye movements of the
participants during data collection.

As NME is a commonly used metric in vision-based
facial landmark tracking, we directly compare our land-
mark tracking results with several state-of-the-art vision-
based solutions [8], [44], [45] in Table 1. These vision-
based solutions were evaluated using multiple public im-
age datasets (e.g., WFLW [31], 300-W [46]) which have
manually labeled groundtruths and different numbers of
facial landmarks to be reconstructed. Although it might
not be a fair comparison as our dataset is self-collected and
we use a pre-trained camera-based network to generate
landmark groundtruths instead of human labeling, the
comparable NME accuracy shows the promising perfor-
mance of BioFace-3D, even compared with vision-based
solutions.

6.2.2 Continuous 3D Facial Reconstruction

To test BioFace-3D’s ability of continuous 3D facial re-
construction, we show the video frames, reconstructed
landmarks, and rendered 3D avatar frames at a interval
of 5 frames in Fig. 9. Our rendered facial animation
samples can be found at [47]. We observe that the final
3D facial animation and 2D landmark generated from
the biosignal features closely resemble the animation and
landmarks generated using visual features, demonstrating
the effectiveness of the biosignal features on capturing
facial dynamics.

6.2.3 Photo-realistic Animation Rendering

To demonstrate the versatility of our proposed system
across various avatar rendering scenarios, we visualize
different facial expressions, reconstructed 3DMM coeffi-
cients, and photorealistic synthesized images in Fig. 10.
We can find that BioFace-3D is able to generate photo-
realistic synthesized images representing different facial
expressions. The generated photo-realistic avatar videos
can also be found at [47].
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Fig. 10. Example of photo-realistic animation generation.

7 PERFORMANCE ON USER AUTHENTICATION &
IDENTIFICATION

7.1 Experimental Methodology

Experimental Setup & Data Collection. We evaluate
the performance of BioFace-3D for user authentica-
tion/identification using data previously collected from
16 participants (detailed data collection procedures are
outlined in Section 6.1). In the authentication scenario,
each participant will take turns to be selected as the
legitimate user, with all other participants considered as
attackers. Data from 9 of these attackers will be employed
for training the authentication network, while the data
from the remaining 6 will not be used in the network’s
training. This approach aims to create a more realistic
scenario for evaluation. In the blind attack scenario, the
attacker will randomly perform a gesture in an attempt to
fool the authentication network, while in the credential-
aware attack scenario, the attacker will mimic the same
gesture as the legitimate user. In the identification scenario,
given the use case involving a small group of family
members sharing the same device, we randomly selected
five participants for training the identification network.
Additionally, we extend the evaluation to accommodate
up to 16 participants enrolled in the system. For all of the
scenarios, we divide the whole dataset into three parts:
training data, validation data, and testing data with a ratio
of 8:1:1.

Evaluation Metrics. 1) True Positive Rate (TPR) is the
probability of the legitimate user successfully pass the
authentication system; 2) False Positive Rate (FPR) is the
rate of attackers passing the system; 3) Receiver Operat-
ing Characteristic (ROC) Curve visualizes the relationship
between FPR and TPR under varying threshold settings;
4) Area Under Curve (AUC) reflects the area underneath
the ROC curve, which provides an aggregate measure of
system performance across all thresholds, with a higher
value indicating better model performance; 5) Identifica-
tion Accuracy is the probability of a user being correctly
classified; 6) Confusion Matrix is a tabular representation
that illustrates the classification results of the identification
network. The shade of the cells in the matrix indicates the
proportion of users that are correctly classified.

7.2 Performance on User Authentication

Single User Authentication. Fig. 11 illustrates the TPR
& FPR of user authentication across all 16 participants.
Specifically, each participant performs three gestures in
a row, and we compute the average result based on all
potential combinations of gestures. We observe that the
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Fig. 12. Performance of user authentication w. and w/o using CBAM
attention modules.

TPR for all participants exceed 95%, while for most par-
ticipants, the FPRs are nearly 0%. The results demonstrate
the effectiveness of BioFace-3D for user authentication.

Performance Under Blind Attack. While under blind
attacks, the authentication system can successfully achieve
nearly one hundred percent of rejecting illegitimate users.
The findings are intuitive because it’s extremely unlikely
for attackers to correctly guess the order of the user’s facial
gestures. Even the attacker correctly guessed the series of
gestures, it’s nearly impossible to generate a similar bio-
metric signal as the legitimate user. Therefore, TPR on the
ROC curve is almost 100% and FPR is nearly 0%.

Performance Under Credential-aware Attack.
As illustrated in Fig. 12, under credential-aware attacks,

our authentication system can also achieve an exception-
ally low attack success rate, approaching zero. Even if
the attacker possesses knowledge of the legitimate user’s
credentials, replicating the biosignals originating from the
legitimate user’s facial expressions is nearly impossible.

Impact of CBAM. We further evaluate the impact of
CBAM on system performance. In Fig. 12 (a), the ROC
curve depicts the model’s performance when trained with-
out CBAM layers under the credential-aware attack, with
the anger gesture set as the credential. The corresponding
AUC values for one gesture, three in a series, and five in
a series are 0.9264, 0.9911, and 0.9956, respectively. Fig. 12
(b) illustrates the ROC curve of the model trained with
CBAM layers, and we find out the results are increased
to 0.9341, 0.9851, and 0.9995, respectively. This observation
underscores the effectiveness of CBAM in enhancing the
model’s performance. Furthermore, we also check how
adding CBAM affects facial landmark tracking. Specifi-
cally, we incorporate CBAM layers subsequent to each
convolutional layer in the biosignal-based CNN network.
We find that using CBAM leads to changes in the average
MAE and RE. With CBAM, the average MAE and RE
become 1.11% and 2.82%, which is an increase of 0.74%
and 0.53%, respectively.

Impact of Series of Gestures. Fig. 13 shows the ROC
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curves of single gestures, and we found out that the fear
gesture exhibits the best performance with an AUC of
0.9733. Fig. 14 presents the results from multiple trials,
where users make repeated attempts to pass the system.
Specifically, under the second trial, the average TPR could
reach 0.99, and get close to 1 under the third trial. These
promising results demonstrate the capability of BioFace-
3D for user authentication.

7.3 Performance on User Identification

Fig. 15 illustrates the confusion matrices for use identi-
fication. As the series of gestures and soft majority vote
method is deployed, the accuracy of identifying each user
is raised significantly. As illustrated in Fig. 15 (a), when
only one gesture is performed the overall accuracy is
93.89%. However, as shown in Fig. 15 (b) and (c), three ges-
tures in series and five gestures in series can significantly
increase the accuracy to 99.65% and 99.80%, respectively.
This demonstrates that the robustness of BioFace-3D for
user identification.

7.4 Impact of Data Augmentation.

We also evaluate the impact of data augmentation on user
identification. Without data augmentation, the average
accuracy for single, three, and five gestures is 66.25%,
89.96%, and 94.85%, respectively, which represent a reduc-
tion of 27.64%, 9.69%, and 4.95% compared to the results
obtained with data augmentation. The results underscore
the efficacy of employing data augmentation techniques.

7.5 Performance of 16-User Identification.

We further evaluate the performance of 16-user identifica-
tion. As illustrated in Fig. 16, the overall identification ac-
curacy is 81.25%, 98.13%, and 99.87% with one, three, and
five gestures in a series. The promising results demonstrate
the effectiveness of user identification even when as many
as 16 participants are involved in the system.
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(a) Single-gesture based (b) Three-gesture based (c) Five-gesture based

Fig. 15. Confusion matrix of user identification of BioFace-3D with all possible gesture combinations.

(a) Single-gesture based (b) Three-gesture based (c) Five-gesture based

Fig. 16. Confusion matrix of 16-user identification of BioFace-3D with all possible gesture combinations.

8 RELATED WORK
Camera-based Facial Landmark Detection. Traditional
holistic camera-based methods [6], [7] detect facial land-
marks by iteratively mapping a statistical facial model to
the video frames. Constrained Local Model (CLM)-based
methods [48], [49] build independent local shape models
for each landmark, making them more robust to illumina-
tion and occlusion. Differently, deep-learning-based meth-
ods [8], [29], [50] extract high-level features from images
and further learn a mapping to landmark locations via
deep learning. However, these solutions require users to
face a camera at all times without occlusions and under
good lighting conditions.

Speech-driven Facial Animation. Early works [51],
[52] utilize hidden Markov model (HMM) to generate
speech-driven facial animations. Recent studies show a
success of generating facial animations from audio spectro-
grams using 2D CNN [53] and from raw audio waveform
using 1D CNN [54]. Moreover, LSTM-based methods have
also been deployed for synthesizing mouth animations [55]
or reconstructing full facial landmark [56]. However, these
studies are not able to recognize silent facial gestures or
expressions while talking.

Wearable-sensor-based Facial Movement Classifica-
tion. Some studies recognize the user’s facial movements
using wearable sensors. For instance, speech-related move-
ments can be sensed using capacitive sensors [10] or mag-
netic sensors attached to the tongue surface [9], [57], facial
expressions can be identified using smart glasses with
piezoelectric sensors [58] or optical sensors [59], and facial
gestures can be sensed using earphone microphone [60],
or acoustic interferometry [61]. Additionally, EMG & EEG

signals have been shown effective in distinguishing a lim-
ited set of pre-defined facial gestures. Through attaching
sensors around the user’s eyes and forehead, previous
studies can perform 5-class [62], 9-class [63], 10-class [64],
11-class gesture recognition [65]. More recently, Matthies
et al. use tiny biosensors placed inside the ear canal to
distinguish a set of 5 facial gestures [11], and Nguyen et
al. use EMG signals captured behind the user’s ears to
sense tongue movements [66]. In addition to EMG, a few
studies (e.g., [12], [21]) propose to use EOG signals to track
eye movements to interact with machines. However, all
these studies are classification-based methods and cannot
be used for continuous 3D facial reconstruction.

Wearable/VR Authentication. EEG signals have been
proved reliable on authentication users using commercial
headsets(e.g., Emotiv Epoch+ [13]), leveraging machine-
learning-based algorithms [14], [16] or least square estima-
tion [15]. Alternatively, Google Glass could also serve as
an authentication tool by harnessing its touchpad func-
tionality [67] or internal camera [68]. Yang et al. intro-
duce MotionAuth, an authentication scheme that leverages
biometric data collected from a smart wristband [69],
and Gafurov et al. incorporate IMU sensors into shoes
to authenticate users by analyzing foot movements [70].
Regarding VR authentication, diverse biometric modalities
have been employed including head motion [17], [18], [71],
body motion [19], gaze movements [72], and ultrasonic
reverberations caused by the shape of the users’ heads [20].
However, none of these studies have the capacity to si-
multaneously perform 3D facial reconstruction while their
sensor placement is quite obtrusive.
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9 CONCLUSION

In this paper, we propose BioFace-3D, the first single-
earpiece lightweight biosensing system for continuous 2D
facial landmarks tracking, 3D facial animation rendering,
and user authentication/identification. BioFace-3D can also
generate personalized photo-realistic animations that in-
corporate specific facial details of the user. We design a
novel cross-modal transfer learning framework to leverage
high-precision camera sensor to guide the training of the
biosensing model. We conducted extensive experiments in-
volving 16 participants under various settings. The results
demonstrated that the proposed BioFace-3D can accurately
track major facial landmarks in a continuous manner with
only 1.85 mm average error and 3.38% normalized mean
error. Moreover, BioFace-3D can authenticate users with
high accuracy, low false positive rate, and is robust to
various types of attacks.
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APPENDIX A
PRELIMINARIES

Facial Muscles and Eye Movements. Facial muscles, as
illustrated in Fig. 17 (a), are striated skeletal muscles lying
underneath the skin of the face and scalp to perform
important functions for daily life, such as mastication and
facial expressions. Different facial movements or expres-
sions are produced by the contraction of a different set
of facial muscles [73], [74]. For instance, smile involves
a person pulling their lip corners up, thereby, raising
their cheeks towards the eyes, making the eyelids come
closer. These micro-facial movements are mainly driven by
zygomaticus major, orbicularis oris, and orbicularis oculi.
Differently, surprise involves raising eyebrows, widening
eyes, opening the mouth, etc., which are usually associated
with frontalis, depressor labii inferioris, temporalis, mas-
seter, and orbicularis oris, etc. Fig. 17 (b) shows a common
set of the activated facial muscles for seven universal
expressions of emotion [74]. In addition, the eyeball acts as
a dipole with a positive pole oriented anteriorly (cornea)
and a negative pole oriented posteriorly (retina) [75]. This
shows the potential of tracking the entire facial movements
and eye movements through sensing the contraction of
corresponding facial muscles and the bioelectrical signals
caused by eye movements.

Sensing Facial Muscle Contractions via Single-ear
Biosensors. Whenever a muscle contracts, a burst of elec-
tric impulses is generated which propagates through adja-
cent tissue and bone and can be recorded from neighboring
skin areas [76]. These bursts of electricity can be captured
by surface electrodes using electromyography (EMG) mea-
surements if the electrodes are placed close to or on top of
the activated muscles. Although the electrical potentials
may pass through the connected muscles to be captured
by an electrode, it remains unclear whether we can use
the surface electrode attached to a least-obtrusive area,
such as the area around one side of the ears, to sense the
entire facial movements. We thus conduct an experiment
where a surface electrode is attached to one side of the
masseter around the ears while a participant performs
multiple facial expressions including smile, sad, surprise,
contempt, and chewing. In Fig. 18 (a), multiple events are
generated corresponding to different muscle contractions.
While some of them are not visually distinguishable due
to the wide range frequency response of EMG, the events
caused by facial activities can be clearly captured. We
prove in Section 6 that the signals of each expression are
indeed unique as validated by the Principal Component
Analysis (PCA) presented. In the same setting, we ask the
participant to look in different directions, and we observe
that a unique voltage fluctuation is caused in the elec-
trooculography (EOG) signals depending on the direction
and duration of the movement, as shown in Fig. 18 (b).
These observations confirm the possibility of using single-
ear biosensors to sense the entire facial movements.

Continuously Sensing Muscle Contractions. To render
continuous and smooth facial animations, the biosensors
must be able to continuously track the muscle activities
during the transitions between facial events. To validate
the feasibility, we conduct an experiment to track the user
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Fig. 17. Illustration of facial muscles.

(a) EMG signals of fa-
cial activities

(b) EOG signals of eye
movements

(c) EMG signals of a
slow smiling

Fig. 18. Biosignals collected from a side of masseter around the ears.

facial expression while the participant is asked to change
their face from neural to smiling with a slower speed than
normal (around 10 seconds). The purpose of this exper-
iment is to validate whether the biosensor can capture
muscle biosignals generated continuously during facial
expression. Fig. 18 (c) shows the EMG signals obtained
from the experiment, clearly validating the capability of
surface electrode in continuously sensing facial activities.
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Fig. 19. EMG signals corresponding to the facial gestures expressing
“contempt”, as performed by two users across multiple rounds.
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APPENDIX B
FEASIBILITY STUDY FOR USER AUTHENTICATION
& IDENTIFICATION.
The extracted EMG/EOG signals on the face during the
same expression vary among individuals due to factors
like distinct muscle activation patterns, variations in neu-
romuscular control, differences in facial anatomy, and the
interplay of multiple muscles. These differences can also
be influenced by physiological and psychological factors,
leading to individualized patterns of muscle activation.
For instance, two people smiling might show slightly dif-
ferent patterns of muscle activation in their cheek muscles
(zygomaticus major) [77]. Hence, there exists significant
potential in utilizing the biosignals extracted by BioFace-
3D for the purpose of distinguishing and authenticating
users. To validate this hypothesis, we conducted an exper-
iment where two participants were required to perform
the “contempt” gesture multiple times while wearing the
sensing prototype. Fig. 19 (a) and (b), as well as (c) and (d),
illustrate the EMG signals collected from participants 1 and
2, respectively. It is evident that when performing identical
gestures, the EMG signals of different participants display
entirely distinct patterns, whereas the biosignals of the
same participant remain remarkably consistent. The obser-
vation demonstrates the feasibility of leveraging BioFace-
3D for user authentication/identification.

APPENDIX C
SYSTEM IMPLEMENTATION

C.1 Electrode Placements
A traditional bio-electrical sensor channel includes three
types of electrodes: reference electrode, measurement electrode,
and ground electrode. To provide a relatively stable refer-
ence point and driven ground, the reference electrode and
ground electrode should be attached to bony areas to keep
all the underlying muscular signals minimized. Thus, we
attach these two types of electrodes to the back of the ears
(i.e., mastoid bone) in the design of BioFace-3D. Regarding
the measurement electrode, from our analysis in terms
of the unobtrusiveness and the capability of sensing, it
could be placed at six locations P1-P6 as illustrated in
Fig. 20. In particular, P1 is on the temporalis, proximity
to orbicularis oculi; P2 is on the temporalis and temporal
bone, proximity to deeper head; P3 is on the masseter (on
the zygomatic bone); P4 is at the junction of the mandible
and temporal bones with proximity to temporalis and mas-
seter; P5 is at the junction of risorius, masseter, platysma,
on the mandible bone; and P6 is on the lower side of
the masseter, proximity to risorius and platysma. To find
the most suitable location for the measurement electrode,
we perform both SNR and Principal Component Analysis
(PCA) analyses below.

SNR Analysis. We calculate the Signal-to-Noise Ratio
(SNR) of the signals generated by each of the universal
facial expressions using the six measurement electrode
locations. To ensure the acceptable quality of the measured
biosignals, the SNR should be greater than 1.2 db [78].
However, from our experiments we observe that a value
more than 1.6 dB is acceptable to withstand the baseline

P1

P2

P3

P4

P5

P6

Fig. 20. Potential electrode placements.
TABLE 2

SNR results from the six facial locations in decibels (dB).

Happy Sad Angry Surprise Fear Disgust Contempt
P1 12.89 4.24 7.00 4.87 7.07 1.98 16.50
P2 8.49 2.95 7.06 7.65 5.23 1.86 8.55
P3 10.18 5.50 7.00 4.87 7.07 1.98 16.50
P4 3.70 1.58 3.19 5.31 2.50 1.27 12.06
P5 6.58 11.97 4.19 3.14 2.60 0.89 16.24
P6 3.82 3.47 3.86 3.13 1.54 0.56 11.18

noise variations. The results are shown in Table 2. We
observe that P4-P6 have a relatively low SNR (< 1.6
dB) for some of the expressions. For instance, sad has
a low magnitude at P4 because the location is situated
outside the masseter, which has loose connections to the
depressor anguli oris that facilitates the facial gesture. Fear
has low magnitude at P6 as it is at the lower end of the
masseter that has no connection to the muscles deforming
the mouth. Through this analysis, we found that P1, P2,
P3 locations perform well with all the universal facial
expressions.

PCA Analysis. Although SNR is a great indicator for
detecting facial activities, it does not provide sufficient
details on the quality of the signals in distinguishing
different facial activities. To analyze the distinguishability
of the captured signals of different facial movements,
we transform the gestural signals from P1, P2 and P3
locations to the frequency domain using Discrete Fourier
Transform (DFT). The DFT signals are then projected into
new dimensional space for feature engineering via Prin-
cipal Component Analysis (PCA) separability scores [79].
The overall separability scores at P1, P2, P3 are 94.25%,
93.53%, 92.27%, respectively. This result affirms the fact
that each facial movement generates a unique physiologi-
cal signature at each of these facial locations. Specifically,
P1 and P2 are affected by an overlap between fear and
anger gestures while P3 is affected by an overlap between
smile and contempt gestures. P3 can distinguish fear and
anger due to its connections to frontal face muscles while
P1 and P2 can separate smile and contempt as they can
capture buccinator and zygomatic major activations in a
fine grained manner. Due to the intrusive nature of P1, we
choose to use two measurement electrodes at P2 and P3,
which can complement to each other to sense the entire
facial activities.

C.2 Prototype

Single Ear-piece Design. From our experiments, the gestu-
ral signals generated on both sides of the face are observed
to be very similar in magnitude, shapes, etc. In particular,
there are no significant changes to the dimensional space
and separability scores of the gestural signals after PCA.
For P2, the dimensional space has 270, 272, and 272 com-
ponents when we use the data from left side, right side and
both sides of the face, respectively. For P3, the dimensional
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Fig. 21. BioFace-3D prototype.

space has 153, 156, and 158 components. Hence, there
are almost no unique features that can be added by the
data from the second side of the face. The dimensional
space explains 95% of the variance of the dataset and the
separability scores for each case does not vary by more
than 1% while remaining higher than 92%. Thus, universal
gestures that involve muscle groups from both sides of
the face can be captured with equal detail from electrode
channels being placed on just one side of the face.

Prototype. The BioFace-3D wearable device is cus-
tomized based on (a) dimension of the user’s head (b)
preference for the side of the earpiece. The earpiece de-
sign is dictated by the facial locations of measurement
electrodes P2 and P3 as described previously. The reference
electrodes are placed on a bony surface behind the ear such
that those electrodes are sufficiently away from the facial
muscle activity that the measurement electrodes capture.
The earpiece provides slots for measurement, reference
and ground electrode placements at precise locations as
illustrated in Fig. 21. This earpiece is integrated with a
headband that goes around the neck. We designed three
sizes of prototypes that place the sensors in appropriate
facial locations for three adult population groups: Large,
Medium, and Small. For each of the sizes we designed two
variants based on which side the earpiece is present. This
allows for a wearable device that suits a large population.
This headpiece also houses a circuit box to contain the
hardware. All of the components in the headset are man-
ufactured by 3D printing of PLA to ensure that the pro-
totype is lightweight. BioFace-3D uses an ADS1299 based
bio-amplifier circuit, i.e., OpenBCI [80], [81], and Ag/AgCl
surface electrodes [82] that stick to the user’s skin, as
illustrated in Fig. 21. A Bluetooth module is integrated
for data streaming. Due to the customized shape of the
prototype, which is tailored for wearing around the user’s
ears, its design does not accommodate wearing on other
body parts. We choose this part to maintain a minimized
obtrusiveness level to the wearer. Sensing facial move-
ments using sensors attached to other body parts (e.g., the
chin and neck) is left as our future work.

APPENDIX D
PERFORMANCE ON FACIAL TRACKING

D.1 Eye Movement Tracking

To better evaluate the performance of gaze tracking, we
collected another dataset involving three participants, who
were asked to repeatedly look into four different directions
(i.e., left, right, up, and down) for 300 seconds. Each
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Fig. 23. Performance of continuous mouth movement tracking while
the user is speaking.

gazing activity lasts for 2 seconds and was separated by 1
second looking straight ahead, which results in a total of 100
gaze movements. For each participant, we use the first 4
minutes for training and the remaining 1 for testing. The
MAE CDF is shown in Fig. 22 (a), in which we achieve
an average MAE of 0.82 mm for all eye-related landmarks,
0.73 mm for eye rims, and 0.95 mm for pupils. We found
that 80% of the pupil landmarks have an error lower than
0.98 mm, which shows the promising capability of BioFace-
3D for gaze tracking even in this active eye-moving setting.
Examples of the reconstructed landmarks (right/left gaze)
are shown in Fig. 22 (b).

D.2 Facial Landmark Tracking (Speaking).

To comprehensively evaluate our system, we extended
our experiments to other types of facial movements (i.e.,
speaking) by involving five participants who were asked
to repeatedly speak nine digits (i.e., one to nine). During
experiments, each digit was repeatedly spoken for 4 min-
utes, which results in a total of 36 minutes of data. We
used 26 minutes of data for training and the remaining
10 minutes data for testing. The CDF curves for MAE are
shown in Fig. 23 (a), in which we achieve an average
MAE of 1.63 mm for all facial landmarks, while 2.39
mm for mouth-related landmarks. We found that 80% of
the mouth landmarks have an error lower than 3.29 mm,
which shows the promising capability of BioFace-3D in
tracking facial movements of speaking. Examples of the
reconstructed mouth landmarks at a interval of five frames
of speaking four are shown in Fig. 23 (b). The promising
results demonstrate the capability BioFace-3D of tracking
the users’ mouth movements while they are speaking,
potentially extending our system to other usage scenarios
such as speech enhancement.
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Fig. 24. Performance of facial landmark tracking with different sampling
rate & training data size.

D.3 Micro-benchmark Tests
D.3.1 Impact of Biosensor Sampling Rate
To evaluate the impact of sampling rates on our system,
we down-sample the frequency of the biosignal collected
at 250 Hz to 50-200 Hz.

Fig. 24 (a) presents the average MAE and NME when
varying the sampling rate from 100 Hz to 250 Hz. We ob-
serve that high sampling rate slightly improves the perfor-
mance, and BioFace-3D is not very sensitive to changes in
the sampling rate, given the range from 100 Hz to 250 Hz.
Even if the sampling rate is decreased to 100 Hz, BioFace-
3D still achieves an average MAE of 2.16 mm and NME of
3.94%, with average standard deviations of 1.23 mm and
1.09%, respectively. These results show that our system
can also provide good performance even with a lower
sampling rate, which can further reduce the computational
complexity and power consumption.

D.3.2 Impact of Training Data Size
We then evaluate the system robustness with different
training data sizes to seek the potential of further reducing
training efforts. Fig. 24 (b) presents the overall system
performance when varying the training data size from 5
minutes to 20 minutes for each participant, while all the
remaining data is used for testing. We observe that even if
the size of training data is decreased to 5 minutes, BioFace-
3D still achieves an average MAE of 2.17 mm and NME of
3.95%. A larger training size would lead to better accuracy,
but it remains operable if a user intends to have a quick
enrollment process.

D.3.3 Impact of Face-worn Devices and Masks
Wearing face-worn devices/masks involve external forces
(e.g., rubber bands for face coverings), which would
tighten facial muscles and add additional pressure on
the prototype, potentially introducing noises to biosensor
readings. We further test the system performance with the
presence of a face mask or a VR headset (a cardboard
headset or a standalone headset), as shown in Fig. 25 (a).
Specifically, we asked a participant to wear a face mask
and two types of VR headset (i.e., a cardboard headset
and a standalone headset) respectively while using our
system. The training data is the 20 minutes data with
no occlusion involved. To obtain the ground truth from
the vision-based network, we cut off the front side of the
mask to expose the mouth of the user, and tear off the
headsets to reveal the user’s eyes & eyebrows, as shown
in Fig. 25 (a). Fig. 25 (b) presents the system performance
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Fig. 25. Performance of continuous facial landmark tracking under the
presence of facial occlusions.

when wearing face masks and head-worn VR headsets.
Although wearing face-worn devices/masks decreases the
performance, the overall performance remains within an
acceptable range, e.g., average MAE of 1.93 mm, 1.78 mm,
and 2.09 mm while wearing a face mask, a cardboard head-
set, and a standalone headset, respectively. These results
demonstrate the robustness of BioFace-3D with different
facial occlusions.

D.3.4 Resilience to Bursty Head Movements

We are also interested in how bursty head movements
impact our system. Specifically, the participant was asked
to regularly rotate & shake his head during testing data
collection, while ensuring the head could be captured by
camera for the ground truth acquisition. The training data
is the 20 minutes data with no head movements involved.
With an average MAE of 1.79mm and an NME of 3.25%,
BioFace-3D is resilient against active head movements,
making it applicable to many practical scenarios involving
active head movements.

D.3.5 Temporal Stability

The sensor measurement would be influenced by the day-
by-day change of the users’ body status, uncontrollable
impurities on the skin surface, and the sensor displacement
as the prototype won’t be worn in exactly the same way.
As time passes by, these issues may become more serious
and therefore affect the sensor measurements at a greater
scale. It is thus important to validate the system’s temporal
stability to prevent repetitive training. We asked three
participants to collect another four sets of testing data
(10 minutes each) which is separated from training data
by 1 day, 2 days, 1 week, and 2 weeks. As shown in
Fig. 26 (a), we found that in the worst case, BioFace-3D stills
reaches an MAE of 2.87 mm over two weeks and there is
no significant performance change in two-week period, as
illustrated in Fig. 26 (b). These results affirm the fact that
the sensitivity to sensor placement positions, which tend
to differ minutely with each usage, have a negligible effect
on the system outputs.

D.3.6 Computational Cost & Power Consumption

The inference time of 53 facial landmarks is measured
on a single NVIDIA GTX 2080Ti GPU, and our model
only takes around 0.033 ms to reconstruct a single frame,
which is sufficient for real-time applications. Additionally,
the model only takes around 0.775 ms to reconstruct the
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Fig. 26. Performance of landmark tracking over time.

3DMM of a single frame, and 0.038 ms for user authen-
tication/identification. In addition, we use a power mon-
itoring device (i.e., Monsoon High Voltage Power Mon-
itor [83]) to measure the power consumption of BioFace-
3D. All measurements are conducted at 60◦F with a normal
Lipo battery voltage (3.7V). Specifically, if the system is in
the idle state where MCU is working in the idle mode with-
out streaming data via Bluetooth, BioFace-3D consumes 118
mW on average. If BioFace-3D is sensing and streaming
biosignal data via Bluetooth, the whole system’s power
consumption is 138 mW. This indicates that BioFace-3D can
provide continuous data logging for 8.2 hours using a 500
mAh Lipo battery, which meets the requirements of most
applications.

D.4 User Study

We asked the participants to fill a questionnaire, as shown
in Fig. 27, on their experience with BioFace-3D after the
experiments. We found that 81.3% of the participants are
willing to use BioFace-3D and 75% of the participants
feel it’s comfortable to wear. 50% of the participants think
BioFace-3D is easy to use and 31.3% of the participants
feel it’s very easy to use. We only got one negative
feedback towards BioFace-3D , simply because the spe-
cific participant ”doesn’t want to have anything around
his head”. Additionally, 81.3% of the participants prefer
BioFace-3D rather than traditional camera-based solutions,
mostly due to the reason that BioFace-3D is more privacy
preserving, can detect facial expression independently of
body movements, and is reliable when parts of the face
are blocked. All participants can use it for more than 30
minutes and 81.3% of the participants can use it more
than 1 hour, which is sufficient for many usage scenarios.
Specifically, the major reason which made 18.8% of the par-
ticipants only choose to wear it for 30 minutes is the lack of
adjustability. Due to the size of the prototype being fixed
at the current stage, sometimes it cannot fit the user’s head
very appropriately and will cause displacement as time
passes by, which may downgrade user experience. We plan
to address this issue by utilizing more flexible materials
to enhance the size variability. This is considered as our
future work. Finally, 87.5% of the participants prefer to
use BioFace-3D for authentication/identification compared
to password-based solutions, due to its convenience and
reliability.
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Fig. 27. Results of user study questionnaire.

APPENDIX E
DISCUSSION

User-independent Model. As the signal strength, re-
sponse, and sensitivity of biosignals may vary from user to
user, we currently adopt user-specific training to mitigate
this variance and improve system accuracy. However, this
might reduce the usability as new users have to undergo
the enrollment phase before using the system. To im-
prove usability, we can potentially train a generic user-
independent model using data collected from a large set of
users. When new users are introduced, the generic model
can be adapted to the users with few calibration samples
via meta-learning-based few-shot adaptation [84], [85]. We
leave this as our future work.

Effects of Body Movements. Motion artifacts are a
formidable noise that occurs in all Electrogram measure-
ments [86]. It is a low-frequency noise occurring in the
EOG frequency range. They occur due to two reasons: 1)
relative motion between the surface electrodes and the skin
surface; and 2) connection quality fluctuations between the
wires and electrodes. We ensured that motion artifacts are
mitigated by the design of the prototype which maintains
the contact quality of the surface electrodes and keeps
the connecting wires very short. This is evidenced by the
evaluation of the system under rapid head movements in
Appendix D.3.4. The body movements such as walking
would have significantly less impact on the results as
they introduce less relative motion between electrodes and
skin as well as electrodes and wires when compared to
rapid head movements. We note that the participants were
allowed to move freely during our experiments as long as
they can be captured in the video.

Potential Applications. Without requiring a camera
positioned in front of the user, our system would intro-
duce new opportunities in various emerging applications.
For instance, through increasing the awareness of the
user’s real-time facial expressions and emotional states,
our system can enable a more immersive user experience
for existing AR/VR applications (e.g., face-to-face interac-
tions), assess student engagement for online courses, and
assist with driver fatigue detection to monitor abnormal
behaviors, etc. In addition, our system can serve as a silent-
speech interface for human-computer interaction. Through
performing different facial gestures, people can interact
with smart home appliances (e.g., turn down the volume of
a smart speaker) and disabilities can control their handicap
equipment (e.g., a wheelchair) more conveniently. Further-
more, our system can function as a continuous authentica-
tion mechanism for immersive virtual reality devices, such
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as the Apple Vision Pro and Oculus Quest. This approach
offers significant advantages over traditional password-
based authentication methods, providing enhanced con-
venience and user experience. We plan to develop an API
library which is compatible with major AR/VR platforms
(e.g., OpenVR) and a mobile app to support various mobile
devices in our future work.

Reducing Power Consumption. The current prototype
can support up to 8.2 hours of continuous usage if paired
up with a 500 mAh Li-ion battery. In our future work, we
seek to further improve the system’s energy efficiency by
designing a customized data collection board using a more
compact analog-to-digital converter with fewer channels
for the biopotential measurements (e.g., ADS1299-4 con-
sumes 43% less power than ADS1299-8 used in the current
bio-amplifier circuit [80]).


